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Preface

The integration of knowledge in the life sciences is continuing apace with ever-
increasing importance being placed on computer-based methods of data capture,
analysis, and knowledge representation. Today, our many different sciences are
providing us with a sea of information: it is the handling of this influx that
is becoming a key discovery and regulatory question. The solutions to these
problems will result in advancements to all of the involved sciences and will be
highly influential both in the selection of the areas scientists seek to investigate
and also on their success. For this to happen, it is crucial to establish an open
and lively exchange between computer scientists, biologists, and chemists. To
encourage precisely this type of exchange, crossing the borders of the sciences,
we organized the 1st Symposium on Computational Life Science in Konstanz,
Germany (September 25–27, 2005). The main objective of the symposium was to
form bridges, bringing together scientists from a variety of disciplines to exchange
ideas and research efforts and to talk about the problems in areas of research
that up until now have not been visible at an interdisciplinary level.

Our conference program shows that the scientific mix worked out very well.
From 49 submissions, 21 were selected for presentation at the symposium, cov-
ering areas ranging from high-level system biology to data analysis related to
mass spec traces.

As a supplement to the regular conference program, we dedicated one section
to papers presented in the framework of a workshop on Distributed Data Mining
in the Life Sciences (LifeDDM), organized by Giuseppe Di Fatta. The workshop
focused on the merging field of high-performance, distributed, parallel and grid-
based data mining methods and the applications in the life sciences. This added
yet another facet of computational life science research to the program.

Selecting the papers included in this volume would not have been possible
without the help of an international Program Committee that put in countless
hours to create a minimum of three detailed reviews for each paper! And, of
course, a successful conference relies on many individuals working hard behind
the scenes. We would like to thank first and foremost Heather Fyson for local
organization and keeping everybody on track. Peter Burger worked tirelessly
on the Web pages promoting the conference and Thorsten Meinl was the man
behind the electronic review system. Last, but certainly not least, thanks go to
Ingrid Fischer for putting together this volume!

July 2005 Michael R. Berthold
Kay Diederichs

Robert Glen
Oliver Kohlbacher



Organization

General Chair Michael R. Berthold
University of Konstanz, Germany
Michael.Berthold@uni-konstanz.de

Program Chairs Robert Glen
Unilever Center
Cambridge, UK
rcg28@cam.ac.uk

Kay Diederichs
University of Konstanz, Germany
kay.diederichs@uni-konstanz.de

Oliver Kohlbacher
University of Tübingen, Germany
oliver.kohlbacher@uni-tuebingen.de

Publication Chair Ingrid Fischer
University of Erlangen-Nuremberg, Germany
Ingrid.Fischer@informatik.uni-erlangen.de

Local Chair Heather Fyson
University of Konstanz, Germany
Heather.Fyson@uni-konstanz.de

Workshop Chair Giuseppe di Fatta
University of Konstanz, Germany
Guiseppe.de.Fatta@uni-konstanz.de

Publicity Chair Allan Tucker
Brunel University, UK
allan.tucker@brunel.ac.uk

Submission Chair Thorsten Meinl
University of Erlangen-Nuremberg, Germany
Thorsten.Meinl@informatik.uni-erlangen.de

Webmaster Peter Burger
University of Konstanz, Germany
Peter.Burger@uni-konstanz.de



VIII Organization

Program Committee

Herman Berendsen, Univ. Groningen, Netherlands
Alexander Bockmayr, FU Berlin, Germany
Tim Clark, Univ. of Erlangen-Nuremberg, Germany
Thomas Exner, Univ. Konstanz, Germany
Lawrence O. Hall, Univ. South Florida, USA
Hans-Christian Hege, Zuse Institute Berlin, Germany
Kim Henrick, EMBL, UK
Joel Janin, CNRS, France
William L. Jorgensen, Yale Univ., USA
Michael Kaufmann, Univ. Tübingen, Germany
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Structural Protein Interactions Predict

Kinase-Inhibitor Interactions in Upregulated
Pancreas Tumour Genes Expression Data

Gihan Dawelbait1, Christian Pilarsky2, Yanju Zhang1, Robert Grützmann2,
and Michael Schroeder1

1 Bioinformatics Group, Biotechnological Centre of TU Dresden, Germany
2 Department of Viscersal-Thoracic- and Vascular Surgery,

University Hospital Dresden, Germany
gd@biotec.tu-dresden.de, ms@biotec.tu-dresden.de

Abstract. Micro-arrays can identify co-expressed genes at large scale.
The gene expression analysis does however not show functional relation-
ships between co-expressed genes. To address this problem, we link gene
expression data to protein interaction data. For the gene products of co-
expressed genes, we identify structural domains by sequence alignment
and threading. Next, we use the protein structure interaction PSIMAP
to find structurally interacting domains. Finally, we generate structural
and sequence alignments of the original gene products and the identified
structures and check conservation of the relevant interaction interfaces.
From this analysis, we derive potentially relevant protein interactions for
the gene expression data.

We applied this method to co-expressed genes in pancreatic ductal
carcinoma. Our method reveals among others a number of functional
clusters related to the proteasome, signalling, ubiquitinisation, serine
proteases, immunoglobulin and kinases. We investigate the kinase clus-
ter in detail and reveal an interaction between the cell division control
protein CDC2 and the cyclin-dependent kinase inhibitor CDKN3, which
is also confirmed by literature. Furthermore, our method reveals new in-
teractions between CDKN3 and the cell division protein kinase CDK7
and between CDKN3 and the serine/threonine-protein kinase CDC2L1.

1 Introduction

Pancreatic ductal adenocarcinoma has an extremely poor prognosis. To improve
the prognosis, novel molecular markers and targets for earlier diagnosis and ad-
juvant and/or neoadjuvant treatment need to be identified. One of the key tech-
niques that has been developed to achieve this goal is DNA microarray profiling,
which is used to identify the mechanisms of deregulated molecular functions in
pancreatic carcinoma cells. Despite the progress made in recent years in the
treatment of various types of cancer, the dismal prognosis of pancreatic ductal
adenocarcinoma (PDAC) remains unchanged. In the United States PDAC still

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 G. Dawelbait et al.

ranks fifth among the leading causes of cancer death, accounting for approxi-
mately 30,000 deaths annually. Apart from surgery there is no curative therapy,
and even resected patients usually die within 1 year of the operation. In this
situation there is an urgent need to understand more about the causes and the
pathogenesis of PDAC [6]. Having characterised the gene expression profile of
PDAC by various methods, our motivation is to identify the genes and proteins
that play an important role in the formation of cancer cells from this data set.
Further investigations of this data is hampered by the fact that except for the
sequence rather little is known about those genes. Therefore, to interpret the
data, there is a need for finding the relation between its elements. Protein inter-
actions provide an important context for the understanding of function. Large-
scale protein interaction maps provide a new global perspective with which to
analyse protein function. Our method is based on utilising PSIMAP, the Pro-
tein Structural Interaction Map [4], a database of all the structurally observed
interactions between families and superfamilies of protein domains. It computes
domain-domain interactions for all multi-domain and multi-chain proteins in the
Protein Data Bank (PDB)[2]. The PSIMAP database consists of 90.000 inter-
actions. In a first attempt to evaluate PSIMAP we used only the genes found
as up-regulated in PDAC to identify genes possibly involved in self stimulating
signal circuits. To overcome the gap between the known genes sequences and
known structures, our method uses GTD [9], a database that applies threading
to predict the structure of all the structurally unknown proteins. To allow a
closer insight into the behaviour of the genes, our method also uses Gene ontol-
ogy (GO) functional annotation [3] to annotate the genes. The final visualisation
of the protein-protein interaction network along with the genes annotations con-
tributes to a better understanding of the relevant metabolic pathways.

Another major challenge that faces gene expression data analysis is that
most of the information is hidden in a huge amount of publications. We also
include links to web sites such as Harvester, Google scholar, and IHop to con-
sult relevant literature resources to verify the results and further enhancing the
interpretability of the interaction network.

2 Material and Methods

2.1 Tumour Microarray Data Set

The tumour microarray data set consisted of 1627 genes, it was obtained by
integrating our various analyses of the gene expression profile of PDAC from
Affymetrix GeneChip experiments and the meta-analysis of PDAC gene expres-
sion profiles from public available data of other projects [13]. Here, we only
use the genes found to be up-regulated (954 genes) in PDAC to identify genes
possibly involved in self stimulating signal circuits.

2.2 Resources

Before we describe our work flow linking expression and interaction data, we
briefly summarises the underlying data sources used.
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ID Conversion Structure Prediction

Clustering

SCOP Family PSIMAP

SCOP
GeneOntology
Literature

Microarray chip

Fig. 1. Method work flow illustrating the different steps performed. Starting with the

microarray data provided as a list of genes grouped into up/down regulated clusters, we

perform the conversion of gene symbols to their respective ENSEMBL IDs. To obtain

the threaded PDB structures and SCOP family assignments of the genes we use the

GTD database, the PSIMAP database is queried for obtaining the domain interactions

among the genes. The visualisation of the interaction network using PSIEYE and the

genes are annotated using GO and links to the literature.

– PDB. The Protein Data Bank PDB [2] is a repository for 3D structures. It
currently contains some 25.000 structures most of which have been obtained
by X-ray crystallography. Around half of the PDB structures are multi-
domain structures.

– SCOP. The structural classification of proteins, SCOP [11], is a hierarchical
classification of protein structures at domain level. The hierarchy contains
four levels (class, fold, superfamily, family). At the family level domains
share a high sequence similarity and hence are structurally are very similar.
At superfamily level there is still good structural agreement concerning the
overall topology despite possibly low sequence similarity. Domains grouped
at family and superfamily level can be considered homologous.

– GTD. The Genomic Threading Database (GTD) [9] assigns structural folds
to proteins with unknown structure. Annotations of proteomes of all major
organisms are available. Annotations are based on threading, which is more
sensitive than sequence alignment and can still assign folds correctly despite
low similarity.

– PSIMAP. PSIMAP, the Protein Structure Interactome Map [12, 4] is a
database with all domain-domain interactions in the PDB. Two domains are
considered as interacting if there are at least 5 residue pairs within 5 Å.

– GO. The Gene Ontology GO [3] is a controlled hierarchical vocabulary for an-
notation of genes and gene products. GO breaks down into three subontologies
for cellular components, biological processes and molecular functions.
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Fig. 2. From co-expressed genes to interactions. CDC2 and CDKN3 are co-expressed in

the gene expression data. CDC2 and CDKN3 are assigned by GTD to the PDB struc-

ture 2phk and 1fpzA, respectively. These two PDB structures belong the SCOP families

d.144.1.7 (Protein Kinase catalytic subunit) and c.45.1.1 (Dual specificity phosphatase-

like). PSIMAP, the interaction network, contains an interaction between these two

families derived from the PDB structure 1fq1. Structural alignment of 1fq1B/2phk and

1fq1A/1fpzA results in a high alignment score suggesting high structural similarity

between the aligned structures and hence the validity of the interaction of CDC2 and

CDKN3.

2.3 Work Flow

Figure 1 illustrates the work flow deployed to link the gene expression and protein
interaction data.

– Step 1: From Microarray experiments to set of upregulated genes.
As an initial step, the list of genes obtained from the described tumour
microarray data set is used. The genes are clustered into up/down regulated
lists. Here, only the upregulated gene cluster is used.

– Step 2: From genes to structural folds. Most of the genes from the
pancreas data are of unknown structure. For all these genes we apply GTD
to assign SCOP structural families to the gene products. Only GTD assign-
ments with confidence rate certain and high are considered.

– Step 3: From structural folds to domain interactions. Using the
SCOP domain description, we use PSIMAP to identify interacting domains.
We consider these interactions at family level.

– Step 4: From domain interactions to protein interactions. We con-
sider two proteins as interacting if they contain two domains, whose families
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interact structurally according to PSIMAP. As an example, consider Fig. 2.
CDC2 is identified as a kinase by GTD and SCOP and CDKN3 as a ki-
nase inhibitor. PSIMAP, the interaction maps, finds the kinase family and
inhibitor as interacting based on a corresponding PDB structure.

– Step 5: Visualisation and GO annotation. We use an in-house visual-
isation tool to explore the protein interactions found in the previous step.
All proteins are annotated with their corresponding GeneOntology terms.
Additionally, we screen out interactions at this stage with one partner anno-
tated as intra- and the other as extra-cellular. Finally, we also include links
to relevant web site such as Harvester, Google scholar, and IHop.

3 Results and Discussion

Figure 3 shows the resulting ten different interaction subnetworks. Within the
set of upregulated genes, each of the ten subnetworks identifies a group of genes
from different functional categories. Out of the ten subnetworks shown in the
figure, we will consider the kinase cluster in more detail.

Kinases catalyse the transfer of a phosphate group from a donor, such as ADP
or ATP to an acceptor. The kinase cluster is composed of the genes in Figure 4.
Cyclins combine with cyclin dependent kinases (CDKs) to form activated ki-
nases that phosphorylate targets leading to cell cycle regulation. A breakdown

Fig. 3. For the overexpressed genes in the pancreas data set there are ten distinct

clusters of interactions. The clusters can be broadly classified as kinase/inhibitor, G

proteins, proteasome, ubiquitin, cystatin, serine proteases, canonica RBD, antibody

domains, FAD synthatase isoform1, N-acetyl transferase NAT).
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Symbol Gene name

CDKN3 Cyclin-dependent kinase inhibitor 3
ACVR1 Activin receptor type I precursor
BMP2K BMP-2 inducible protein kinase
BUB1 Mitotic checkpoint serine/threonine-protein kinase BUB1
CDC2 Cell division control protein 2 homolog
CDC2L1 PITSLRE serine/threonine-protein kinase CDC2L2
CDK7 Cell division protein kinase 7
CHEK1 Serine/threonine-protein kinase Chk1
CSNK1A1 Casein kinase I
CSNK1E Casein kinase I
DYRK2 Dual-specificity tyrosine-phosphorylation regulated kinase 2
EPHA4 Ephrin type-A receptor 4 precursor
FYN Proto-oncogene tyrosine-protein kinase FYN
MAP4K4 Mitogen-activated protein kinase kinase kinase kinase 4
MELK Maternal embryonic leucine zipper kinase
MST1R Macrophage-stimulating protein receptor precursor
MYLK Myosin light chain kinase
NEK2 Serine/threonine-protein kinase Nek2
PRKACB cAMP-dependent protein kinase
PRKR Interferon-induced
PRKWNK1 Serine/threonine-protein kinase WNK1
STK17B Serine/threonine-protein kinase 17B
STK6 Serine/threonine-protein kinase 6
TRIB2 tribbles homolog 2
TTK Dual specificity protein kinase TTK

Fig. 4. Upregulated kinases in the pancreas data, which potentially interact with in-

hibitor CDKN3. The CDC2 is known to interact with CDKN3, and CDK7 and CDC2L1

are likely to be interacting according to sequence homology and interface residues con-

servation. For all the others an interaction is unlikely.

in the regulation of this cycle can lead to out of control growth and contribute
to tumour formation [5]. Defects in many of the molecules that regulate the cell
cycle have been implicated in cancer. Moreover, protein kinases are elementary
switches in signal transduction cascades and are overly important in the develop-
ment of cancer as known from the activation of HER2/NEU in breast carcinoma
[10]. Protein kinases are well investigated and a crucial target for anti-neoplastic
therapy [15, 8, 16]. Therefore the potential regulation of these kinases in pancreas
cancer is important to further our understanding of this disease.

Since the genes listed in Fig. 4 are identified as kinases and since there is
an interaction of a kinase with the kinase inhibitor CDKN3, all of these kinases
potentially interact with the inhibitor. A summary of GTD’s assignments and
the resulting interactions is given in Fig. 7. All of GTD’s assignments are made
with high confidence and the assigned structures align structurally well with the
kinase in PDB structure 1fq1, chain b (all RMSDs are below 2 Å).

One of these interactions is verified in literature [7], namely CDC2 and
CDKN3 and in the interaction databases DIP [17] and BIND [1]. CDKN3 has
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Fig. 5. Left: Cyclin-dependent kinase 2 CDK2 (blue) interacting with the cyclin-

dependent kinase inhibitor CDKN3 (yellow/orange). The interfaces are displayed in

light blue and yellow, respectively. The phosphorylated threonine of CDK2, which pro-

tudes into a pocket of the inhibitor, is shown in red balls-and-sticks mode. PDB ID 1fq1.

Right: A closeup showing the phosphorylated threonine of CDK2, which protudes into

a pocket of the inhibitor.

Fig. 6. Structural alignment of the kinases CDK2 (PDB ID 1fq1, chain b) and PDB

ID 2phk with alignment RMSD of 1.54929. The inhibitor (PDB ID 1fq1, chain a) is

aligned to PDB ID 1fpz, chain a with alignment RMSD of 0.84583. 2phk and 1fpz are

the structures assigned by GTD to CDK2 and CDKN3 and 1fq1 is the structure that

shows the interaction of the two domains.
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Protein GTD PDB IDResolution Confidence p value SID PDB ID 2RMSD

CDC2 2phk 2.6 cert 6e-9 d2phka0 1fq1b 1.539
CDC2L1 2phk 2.6 cert 2e-8 d2phka0 1fq1b 1.539
CDk7 2phk 2.6 cert 4e-9 d2phka0 1fq1b 1.539
CHEK1 2phk 2.6 cert 2e-8 d2phka0 1fq1b 1.539
MELK 2phk 2.6 cert 7e-9 d2phka0 1fq1b 1.539
MYLK 2phk 2.6 cert 1e-7 d2phka0 1fq1b 1.539
NEK2 2phk 2.6 cert 5e-9 d2phka0 1fq1b 1.539
PRKR 2phk 2.6 cert 5e-8 d2phka0 1fq1b 1.539
STK17B 2phk 2.6 cert 5e-9 d2phka0 1fq1b 1.539
TTK 2phk 2.6 cert 7e-9 d2phka0 1fq1b 1.539
BMP2K 1a06 2.5 cert 2e-8 d1a0600 1fq1b 1.778
TRIB2 1a06 2.5 cert 6e-8 d1a0600 1fq1b 1.778
CSNK1E 1csn 2.0 cert 1e-8 d1csn00 1fq1b 1.705
ACVR1 1f3m 2.3 cert 2e-8 d1f3mc0 1fq1b 1.884
EPHA4 1f3m 2.3 cert 9e-9 d1f3mc0 1fq1b 1.884
MAP4K4 1f3m 2.3 cert 3e-8 d1f3mc0 1fq1b 1.884
MST1R 1f3m 2.3 cert 2e-8 d1f3mc0 1fq1b 1.884
PRKACB 1f3m 2.3 cert 5e-9 d1f3mc0 1fq1b 1.884
STK6 1f3m 2.3 cert 4e-9 d1f3mc0 1fq1b 1.884
CSNK1A1 1fmk 1.5 cert 4e-8 d1fmk03 1fq1b 1.798
DYRK2 1fmk 1.5 cert 1e-8 d1fmk03 1fq1b 1.798
FYN 1fmk 1.5 cert 2e-9 d1fmk03 1fq1b 1.798
BUB1 1muo 2.9 cert 7e-8 d1muoa0 1fq1b 1.709
PRKWNK11muo 2.9 cert 1e-8 d1muoa0 1fq1b 1.709

Fig. 7. Summary of GTD’s structural fold assignments for the kinase cluster and their

structural alignment with the PDB structure 1fq1 chain b, which contains the inter-

action between CDK2 and CDKN3. “GTD PDB ID” refers to the structure assigned

to the protein, “resolution” indicates the resolution of this structure. All assignments

are made by GTD with confidence certain and low P-value. “RMSD” refers to the

root mean square deviation of the assigned PDB ID to 1fq1 chain b. The interaction

partner CDKN3 (1fq1 chain a) was structurally aligned with the PDB ID 1fpz, chain

a, the structure assigned by GTD to CDKN3 (confidence high and p-value of 1e-8).

1fpz, chain a, and 1fq1, cahin a, align with RMSD 0.826.

been shown to interact with, and dephosphorylate the cyclin-dependent kinase
CDK2 preventing its activation [14]. This gene was reported to be deleted, mu-
tated, or overexpressed in several kinds of cancers . To validate the interactions
we considered the sequence alignments of CDC2’s structure (PDB ID 1fq1) with
the other kinases. We found only for CDk7 and CDC2L1 greater 40% sequence
identity with the threaded structure and only in these kinases the aligned inter-
face residues are well conserved (> 50%). In particular, the key residue threonine
160 (see also Fig. 5) is conserved.

CDK7 is known to be important regulator of cell cycle progression. This
protein forms a trimeric complex with cyclin H and MAT1, which functions as
a CDK-activating kinase (CAK). This protein is thought to serve as a direct
link between the regulation of transcription and the cell cycle. CAK activates
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Protein SID e-value Interface SeqId Thr160 conserved

CDC2 d2phka0 e-108 75.4%
√

CDK7 d2phka0 5e-69 52.6%
√

CDC2L1 d2phka0 6e-70 57.9%
√

1 MENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDT. PDB_1fq1
1 MEDYTKIEKIGEGTYGVVYKGRHKTTGQVVAMKKIRLES. CDC2
9 AKRYEKLDFLGEGQFATVYKARDKNTNQIVAIKKIKLGHR CDK7
15 VEEFQCLNRIEEGTYGVVYRAKDKKTDEIVALKRLKMEK. CDC2L1

** *******!!****!!****! !* !!*!** ** consensus

40 ..ETEGVPSTAIREISLLKELNHPNIVKLLDVIHTE..NK PDB_1fq1
40 ..EEEGVPSTAIREISLLKELRHPNIVSLQDVLMQD..SR CDC2
49 SEAKDGINRTALREIKLLQELSHPNIIGLLDAFGHK..SN CDK7
54 ..EKEGFPITSLREINTILKAQHPNIVTVREIVVGSNMDK CDC2L1

***!***!* !!!****** !!!!* **** ** consensus

141 IKLADFGLARAFGVPVRTYXHEVVTLWYRAPEILLGCKYY PDB_1fq1
142 IKLADFGLARAFGIPIRVYTHEVVTLWYRSPEVLLGSARY CDC2
151 LKLADFGLAKSFGSPNRAYTHQVVTRWYRAPELLFGARMY CDK7
156 LKVGDFGLAREYGSPLKAYTPVVVTLWYRAPELLLGAKEY CDC2L1

!**!!!!!***!*! **!***!!!*!!!*!!*!*!** ! consensus

181 STAVDIWSLGCIFAEMVTRRALFPGDSEIDQLFRIFRTLG PDB_1fq1
182 STPVDIWSIGTIFAELATKKPLFHGDSEIDQLFRIFRALG CDC2
191 GVGVDMWAVGCILAELLLRVPFLPGDSDLDQLTRIFETLG CDK7
196 STAVDMWSVGCIFGELLTQKPLFPGKSEIDQINKVFKDLG CDC2L1

***!! !**!*!**!*********!*!**!!****!**!! consensus

221 TPDEVVWPGVTSMPDYKP.SFPKWARQDFSKVVPPLDED PDB_1fq1
222 TPNNEVWPEVESLQDYKN.TFPKWKPGSLASHVKNLDEN CDC2
231 TPTEEQWPDMCSLPDYV..TFKSFPGIPLHHIFSAAGDD CDK7
236 TPSEKIWPGYSELPAVKKMTFSEHPYNNLRKRFGALLSD CDC2L1

!! ***!!** ****** *!**** * * ***** consensus

Fig. 8. Sequence alignment and interface conservation results of CDC2, CDK7, CDCL1

with 1fq1, chain b. shows the sequence alignment e-value and the percent of conserved

residues in the interface (highlighted in green) and in particular, whether the key

residue threonine 160 is conserved, which is indeed the case (the coulmn hilighted in

Red).

the cyclin-associated kinases cdc2/cdk1, cdk2, cdk4 and cdk6 by threonine phos-
phorylation. Its expression and activity are constant throughout the cell cycle.

CDC2L1 encodes a member of the p34Cdc2 protein kinase family. p34Cdc2
kinase family members are known to be essential for eukaryotic cell cycle control.
The protein kinase encoded by this gene could be cleaved by caspases and was
demonstrated to play roles in cell apoptosis.
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4 Conclusions

There has been a lot of research on clustering of gene expression data and re-
cently there have been a number of tools to incorporate functional knowledge
taken from the GeneOntology in such clusterings. For a list of relevant tools see
www.geneontology.org. In this paper we propose to find interaction partners for
co-expressed gene products. We illustrate the method, which builds on a number
of structural data source such as PDB, SCOP, GTD, and PSIMAP, and evaluate
it on a data set of co-expressed genes in pancreas cancer. Among 10 identified
interaction networks between the co-expressed genes, we considered a kinase-
inhibitor cluster in detail. This analysis reveals a interesting interaction between
CDC2 and the inhibitor CDKN3, which is documented in the literature and
two new interactions, CDK7 and CDC2L1, which we believe to be valid as over
50% of the interaction interface is conserved as a key residue is conserved. The
interactions may prove valuable to improve our understanding of the regulatory
mechanisms underlying the development of pancreas cancer.
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Abstract. Biology has been revolutionised by microarrays and bioinfor-
matics is now a powerful tool in the hands of biologists. Gene expression
analysis is at the centre of attention over the last few years mostly in
the form of algorithms, exploring cluster relationships and dynamic in-
teractions between gene variables, and programs that try to display the
multidimensional microarray data in appropriate formats so that they
make biological sense. In this paper we propose a simple yet effective
approach to biochemical pathway analysis based on biological knowl-
edge. This approach, based on the concept of signature and heuristic
search methods such as hill climbing and simulated annealing, is devel-
oped to select a subset of genes for each pathway that fully describes
the behaviour of the pathway at a given experimental condition in a bid
to reduce the dimensionality of microarray data and make the analysis
more biologically relevant.

1 Introduction

Systems biology is a newly established field, attempting to describe biology at an
organisation level by multidisciplinary research[1]. Microarray research is part of
the toolbox used to define parts of the system and a lot of interest has focused
on gene expression analysis. Computer science and informatics are part of this
field and a lot of emphasis is given in microarray data analysis and data storage,
as well as in distribution and display of data in terms of clustering programs
and large databanks. Another side of systems biology that has flourished is
the network modelling side; the application of mathematical models to try to
describe biochemical pathways and biological processes in general[7].

All these multidisciplinary approaches aspire to eventually combine and pro-
duce functional descriptive models of biological systems that can be used among
others to predict drug response and aid in cancer prevention and treatment.

Gene expression analysis[5] has attracted a large amount of attention over the
last few years mostly in the form of algorithms exploring dynamic relationships
between gene variables and programs that try to display the multidimensional
microarray data in appropriate formats so that they make biological sense [16].
Due to the multidimensionality of the microarray experimental data, this has

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 12–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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proven a challenging task and there still a lot to be desired from the current
work [2]. At the same time, the modelling community has a growing interest in
the complexity of biochemical pathways and various modelling methods exist
that try to predict how such pathways behave [14]. We have taken a heuristic
approach to pathway analysis using the idea of signatures for each pathway.

We opted for an algorithm based on hill climbing [13] and simulated annealing
[9] to mine for the signatures in all the 108 pathways from Escherichia coli . Both
algorithm versions were effective in finding biologically relevant signatures and
the results are promising that this is a valid way forward in the field.

Section 2 is the motivation behind this study, portraying the reasons why we
used a novel interpretation of biochemical pathways for our problem. Section 3
explains the data treatment and their sources, and section 4 describes the sig-
nature mining process and its algorithm. Section 5 deals with the biological
verification of the results. Section 6 summarises the findings and proposes future
directions of work.

2 Motivation

Proteins are the building and functional blocks of the body and interact with
each other in set ways, aptly named pathways. All processes that allow an or-
ganism to function are organised in pathways that work together to initiate and
maintain the organism’s response to internal and external stimuli, hence keep-
ing it alive. Examples include the metabolic pathways in humans, responsible
for decomposing and absorbing nutrients from food consumption.

As a large number of genomes have already been sequenced, interest turns
to the functions and dynamics of the identified genes, as well as their means
of influence to the physiology of the respective organisms. Many genes code
for enzymes that catalyse metabolic reactions producing energy and various
molecules that constitute the core activities of the cell.

Understanding the mechanisms involved in metabolic regulation has impor-
tant implications in both biotechnology and in the pharmaceutical industry.
The identification and validation of drug targets depends critically on knowl-
edge of the biochemical pathways in which potential target molecules operate
within cells. For this reason, the study of biochemical pathways is the focus of
numerous drug discovery researchers and is central to the strategy of many bio-
pharmaceutical and genomic companies. What is presented here is in essence
the first part of a framework that utilises microarray data from genes with fluc-
tuating expression levels to describe the state of the biochemical pathway they
belong to, at any given experimental condition.

There is intense research going on in the areas that constitute systems biol-
ogy, with researchers using very different methods to solve similar problems [1].
From the biological point of view, most researchers use methods that offer some,
but not all the functionality a biologist would like to have, often with rather
complex implementations. If pathway analysis and visualisation is going to be
performed by biologists alone, it should be straightforward and with very few
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intermediate steps, so researchers can focus on the biological significance of the
findings and not the programming implementation of the methods. So far this
is not what is available in the research community, and the software available in
public and commercial tools are mostly web based, but they do not provide all
the functionality they should [3,6,11].

These constraints infiltrate the relationship biologists have with other sci-
ences and computer science in particular. Ma and Zeng have shown in their
paper [12] that modelling biochemical pathways is not straightforward, and mis-
takes can be made.

2.1 Biological Reasoning

We used two terms associated with pathways in the hope that they will help us
describe them better; ‘flow’ of a pathway and ‘rate of production’. Flow describes
the functionality of the pathway. Disruption of ‘flow’ is done by removing or to-
tally altering a gene from the pathway, by stopping the ‘flow’ the pathway seizes
to function. Production rate on the other side describes how fast is the pathway
produces the end product, the rate can be slow or fast and it is commonly reg-
ulated very well within the cell for all the pathways; there are pathways which
their sole aim is to control another pathway and so on.

If genes from a pathway have a non variable expression across a large variety
of microarray experiments that modify the environmental parameters of the
organism, this possibly implies that these genes are not affected by these changes.
If these genes are stable across most of the experiments that means that the genes
are not essential to the regulation of the pathway but rather they provide the
infrastructure, the structural network the pathway relies upon to function.

These genes probably code for structural proteins like membrane pumps,
transmebrane proteins to form channels to the exterior of the cell etc, they are
vital to the pathway and if altered in any way (mutated/deleted) the pathway
ceases function, the ‘flow’ stops.

But what it is proposed here is that although these genes and their respective
proteins are vital to the function of the pathway, they are not ‘rate limiting’ steps,
but rather ‘flow limiting’ steps, so by eliminating them from the frame the focus
will go onto the genes, that by being variable across the different experiments, are
proving themselves to be ‘rate controllers’. This set of genes probably code for
enzymes or signalling molecules etc, that the environmental changes, mutations,
inhibitor substances, heat, etc, have an effect upon, thus changing the production
rate of the pathway. We are looking for a variation in individual gene expressions,
not necessarily very high or very low numbers, but for considerable variations
between experimental conditions. This implies to us that the genes in question
are sensitive to changes to their immediate environment, thus by monitoring
them there is a high chance that their expression variability reflects the true
pathway behaviour at that experimental situation i.e. they are rate controllers
and they control the production output of the pathway.

Using knowledge about biochemical pathways and their components, this
study produces a practical picture of the behaviour of the whole genome of an
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organism based on microarray data and pathway data from major databases
like KEGG [8]. By collecting numerous experiments from a given organism, Es-
cherichia coli in this instance, for distinct environmental conditions and treat-
ments, and then combining it with well established pathway information about
genes and their biological contribution, we choose a subset of genes from each
pathway, a ‘signature’, which is used to describe the behaviour of that pathway
under the given condition.

A pathway’s signature is a unique set of genes that can be monitored in
any given microarray experiment to illustrate that pathway’s behaviour. The
signature is the collection of the ‘true’ expression indicators from the pathway.
As mentioned above, they are the most ‘expressively active’ genes, in the sense
that they are the more sensitive part of the pathway, the ones most respon-
sive to external stimuli, i.e., the change in the environmental conditions affects
them in such a way as to alter their expression in the cell. The rest of the
genes that constitute the pathway are transcriptionally dormant in the sense
that they do not respond readily to change, but they form the infrastructure as
mentioned above.

Current pathway analysis methods of expression data, which include all the
current clustering techniques, require all the genes of a pathway to be taken
into account, and may lead to the erroneous conclusion that the activity of
a pathway has remain unchanged. For example, if more genes in a pathway
are transcriptionally dormant than transcriptionally active, the more numerous
dormant ones mask the true picture of a change in the activity of that pathway.

Monitoring the signature of a pathway in all subsequent microarray exper-
imental data would provide an immediate description of the behaviour of the
pathway and subsequently of the whole organism in a global pathway /signature
network. In essence, we aim to reduce the dimensionality of microarray data to
provide a biologically relevant picture of the whole organism immediately, before
resorting to clustering methods.

Our key emphasis lies on the utilisation of pathway knowledge to group all the
scattered genes in a microarray dataset as pathways and monitor the pathway’s
behaviour as a whole, rather than genes individually. It is a different concept that
aims to help biologists in pathway analysis, by portraying microarray data in a
pathway orientated view, with genes grouped not only by expression similarity
but also biologically.

Furthermore, it offers a simplified view of these pathways by using a spe-
cific subset of genes to portray the behaviour in each experiment. This offers
new options to biologists who could group or ‘cluster’ the pathways according
to behaviour in an experiment, thus finding interesting connections not easily
observed in gene clustering techniques and visualizations.

3 Data Treatment

The datasets are from the Gene Expression Omnibus (GEO)[18] data reposi-
tory at NCBI. Specifically they come from Escherichia coli and represent three
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different experimental conditions in 51 experiments in total. The variety of condi-
tions are exploited to find the most sensitive genes under these conditions, since
the larger the number of experimental conditions and number of experiments,
the more fine tuned the dataset is. There are global experiments containing the
majority of the Escherichia coli genes. For our purpose, the experimental data,
representing 51 microarray experiments, were normalised to Standard Deviation
of 1 and Mean of 0 so that they can be compared together. No further normali-
sation was necessary since the data were already normalised to log ratios when
they were released in GEO.

The genes are chosen according to their variability in expression and have
to be above a certain empirically defined global threshold, as used in microar-
ray analysis [15,4] to be considered as statistically significant. The threshold is
empirically selected depending on the dataset used and is considered for each
time point independently and the selection process is repeated for every exper-
iment. The KEGG Escherichia coli files were taken from the KEGG portal [8].
By combining the two, a list of important genes was assembled and these were
used as the input of the algorithm.

4 Signature Mining Algorithm

Finding the best selection of genes in each pathway that represent that pathway’s
behaviour is problematic because each gene can be a member of several pathways
and we needed to find a way to choose genes that represent each pathway out
of the 108 of Escherichia coli.

Essentially we tried to find a way to move genes from one pathway to another
based on their similarity of expression for the whole of the 51 experiments not
just one experiment. Here we suggest an algorithm based on the concept of
signature and heuristic research methods such as hill climbing [13] and simulated
annealing [9].

Let G be the set of n genes, G = 1, · · ·, n, let be the n by T gene expression
matrix for the n genes where the ith row of X , xi, is the gene expression profile
for gene i. xij is defined as the jth element of the vector xi.

Let the pathway list P be a list of m > 0 lists where is the ith element of
P , where |pi| > 0. A signature si of a pathway pi is defined as where |si| > 0.
The list of signatures is denoted as S, where |S| = m. sij is defined as the jth
element of the list si. How close two expression profiles a and b are, is defined
as follows:

d(a, b) =

√√√√ T∑
i=1

(xai − xbi)2 (1)

D ∈ �n×n, whereDij = d(i, j) (2)
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Fig. 1. Algorithm. Signature Mining. Step 8: a) is for the hill climbing and b) for the

simulated annealing.

The n by n symmetric matrix D contains all of the pairwise similarities
between genes. Note that the larger d (a,b) is, the more dissimilar the genes
a and b are. How close together the genes within a signature are is defined as
follows:

FS(si) =
|si|−1∑
a=1

|si|∑
b=a+1

d(sia, sib) (3)

This is the sum of all pairwise differences between the elements of a signa-
ture. Equation 4 represents how well fitted the signatures are, and equation 5
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represents how many genes have been allocated from each pathway. To ‘mine’
the signatures for each pathway we need to find a set S where F1 is minimised
and F2 is maximised:

F1 =
m∑

i=1

FS(si) (4)

F2 =
m∑

i=1

| si| (5)

F3 =
F1

F2
(6)

The algorithm fitness F3 is represented in equation 6 and needs to be min-
imised for the optimum solution, i.e. the smallest signature possible with the
genes best describing the pathway.

pr = e−Δf , Δf =
f(old) − f(new)

θt
(7)

ε = θoc
iter (8)

c = (
ε

θo
)

1
iter (9)

The signature mining algorithm takes as input a Euclidean distance compari-
son matrix of all the genes from all the pathways, and a pathway list of lists from
KEGG of all the pathways and their genes. To mine the appropriate genes for
each signature, we decided to randomly remove or replace a gene from a path-
way and use a hill climbing or simulated annealing technique to evaluate the
solution. The evaluation is based on a similarity and a size function, requiring
minimisation of their fraction to progress. The algorithm is described below.

The simulated annealing step is defined with the above equations [9]. In
equation 7 the probability that a worst solution is accepted is related to the
difference between the solutions Δf and the starting temperature θo. The average
probability will be 0.368(e−1) and this gets smaller as the temperature reduces
as used in [17].

Since it is not possible to run the algorithm infinitely we choose the minimum
temperature ε (equation 8) and in turn this helps calculate the decay constant
c (equation 9) by which the probability of accepting a worse solution is reduced
in each iteration. We used θo = 1000, and ε = 0.01.
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Fig. 2. Convergence plots of the Algorithm based on hill climbing on the left and the

algorithm based on simulated annealing on the right. The y axis F3 value refers to the

evaluation function F3 (equation 6).

The convergence of the algorithms is shown below (Fig.2), with the number
of iterations being 100000. The convergence graph shows that the algorithm
with the hill climbing method performs well: it sharply drops for the first 10000
iterations and then slowly stabilises to the minimum evaluation value possible
and from the 11000 iteration onwards the slope levels up to almost a straight
line. On the contrary the simulated annealing option affects the algorithm in
that it slowly starts to stabilise from 40000 iterations onwards.

The performance of the algorithm based on hill climbing and simulated an-
nealing is similar in that both versions have similar minimum values. However,
the improvement of using simulated annealing in the process is visible when we
look at the data and the difference the two versions produce in their analysis in
the next section.

5 Application to Escherichia coli Data

From Escherichia coli, a pathway was chosen to illustrate the biological valid-
ity of the method. The Phenylalanine, Tyrosine and Tryptophan biosynthesis
pathway, as defined in the KEGG pathway database, was chosen with focus
on Tryptophan. The Tryptophan production is regulated from a specific operon
that contains five genes, B1260, B1261, B1262, B1263, B1264.

Khodursky et al [10] have done a microarray experiment of Escherichia coli
under Tryptophan starvation and observed a very specific response from the
Tryptophan operon genes. These genes are activated in the absence of Trypto-
phan and induce its production. By starving the organism in their experiments,
they monitored the activation of the pathway.

Using the signature mining algorithm we obtained a signature for each of
the algorithm implementations, based on hill climb or simulated annealing, for
the specific pathway that describes the behaviour of the pathway according to
Khodursky et al [10]. The importance of the signature lies in the fact that we
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Fig. 3. The Tryptophan operon activation from the Khodursky et al [10] dataset

Fig. 4. The Signature genes present in the dataset. The genes describe the activation

of the operon during Tryptophan starvation. The same genes were ‘mined’ with both

versions of the algorithm.

Table 1. Distribution of signature genes per branch of the Phenylalanine (PHE),

tyrosine (TYR) and tryptophan (TRYP) pathway. Genes B0928 and B2021 take part

in both phenylalanine and tyrosine sides of the pathway.

Pa TYR TRYP TRYP TYR PHE TYR TRYP PHE PHE

HC B2329 B1260 B1261 B4054 B1713 B2600 B1704 B0928 B2021
SA B2329 B1260 B1261 B2600 B0754 B0928 B2021

used the GEO dataset, explained above, to find the signature that describes the
pathway in the Khodursky et al [10] dataset.

The Phenylalanine, Tyrosine and Tryptophan biosynthesis pathway includes
genes from the biosynthesis of these three amino acids. These three processes are
grouped together in the KEGG database due to the chemical similarity these
amino acids have, hence the pathway contains 26 genes from all three processes.

Both algorithms gave the same genes from the tryptophan pathway as signa-
ture genes, B1260 and B1261. But the difference in the signature mining algo-
rithms is evident in their ability to produce a pathway signature that represents
the pathway better with the minimum number of genes.

As one can see in Table 1 where all three branches of the specific pathway
are shown, the algorithm based on hill climbing (HC) gave 9 genes with some
of them not very similar gene expression patterns. Whereas the algorithm based
on simulated annealing (SA) produced 7 genes that are closer in terms of gene
expression hence we can say that they describe the pathway better (data not
shown).
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Khodursky et al [10] are interested only in Tryptophan starvation so their
dataset contains only the signature genes B1260 and B1261. The starvation
response of Escherichia coli is to activate the genes that produce Tryptophan
[10]. The response can be observed in Fig. 3 where the gene expression of the
genes that constitute the tryptophan operon is plotted in six part starvation
time course. The organism is placed in an environment without Tryptophan at
the start of the experiments (see Fig. 2) and gene expression measurements are
taken at 20 minutes intervals. It is obvious from the graph (Fig. 2) that the genes
are highly upregulated moments after the starvation initiation.

Both our signatures have two out of five genes from the tryptophan operon.
As it can be seen from Fig. 3 where they are sufficient to portray the behaviour of
the pathway during the experiments. As mentioned above briefly, the signature
was ‘mined’ from the GEO dataset and applied to the Khodursky et al [10]
dataset. This is an important fact to stress, since that shows that we can find
genes that are controlling the expression of the pathway using different datasets
and then use only these genes to monitor the experiment at hand. The more
extensive the mining dataset the more precise the signatures of the pathways
will become.

The results obtained so far have provided early evidence that signature min-
ing can be an effective way of analysing biochemical pathways. Once these path-
ways are chosen the signature mining algorithm can be applied across experi-
mental conditions and datasets with ease.

The biological relevance of the signature mining algorithm is extensive, es-
pecially in the biochemical and pharmaceutical community, since it allows the
researcher to observe the behaviour of a specific pathway in a clear and definitive
way that does not involve genes that do not affect the pathway’s regulation. Its
relevance is obvious in drug related research where it could help in monitoring
the changes of all the pathways of the organism when a drug is tested. In essence,
it allows the researcher to have a snapshot of the whole organism processes in
an easy and transparent way, easy to understand and use.

6 Concluding Remarks

This paper presents a novel interpretation in systems biology of biochemical
pathways and the information that can be gathered from microarray experiments
coupled with transparency of method and biological knowledge.

We have shown that a specially selected sub group of genes from a pathway,
a signature, can describe its behaviour under a given experimental condition.
Two different versions of the same simple yet effective algorithm based on hill
climbing and simulated annealing were created to ‘mine’ for the appropriate
genes for each pathway based on the pathway’s behaviour across a large set of
experiments of varying conditions. Both algorithms were able to select signatures
for all 108 pathways, of which one was used as an example here. The algorithm
based on simulated annealing was more specific providing a smaller signature
for the pathway used.
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Biological knowledge and verification was important in the design and sub-
sequent application of the algorithm and as the preliminary results have clearly
shown this interpretation of biochemical pathways to be an interesting way of
explaining microarray data used for pathway analysis. Future work will include
improvement of the algorithm run time and functionality. Ideally the algorithm
should have picked all five genes that form the operon, and a more pathway
specific evaluation function is currently being tested, with promising results, to
solve that problem.

Furthermore, the algorithm will be included in a framework for microarray
datasets for full exploitation of microarray data in relation to pathway analysis
and pharmaceutical research. Application of the algorithm will not be restricted
only to Escherichia coli but to other organisms with specific pharmaceutical
concerns and ultimately to human data, with a continuation of the framework
steps to include gene networks and interactions with protein-protein networks,
offering a solid solution in that area of systems biology.
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Abstract. Understanding the way gene regulatory networks (complex
systems of genes, proteins and other molecules) function and interact to
carry out specific cell functions is currently one of the central goals in
computational molecular biology. We propose an approach for inferring
the complex causal relationships among genes from microarray experi-
mental data based on a recurrent neuro-fuzzy method. The method de-
rives information on the gene interactions in a highly interpretable form
(fuzzy rules) and takes into account dynamical aspects of genes regula-
tion through its recurrent structure. The gene interactions retrieved from
a set of genes known to be highly regulated during the yeast cell-cycle
are validated by biological studies, while our method surpasses previous
computational techniques that attempted gene networks reconstruction,
being able to retrieve significantly more biologically valid relationships
among genes.

1 Introduction

Large scale monitoring of gene expression activity opened the way for investi-
gating complex biological processes at molecular level [1]. The emergence of the
gene expression data posed new challenges to the data analysis research com-
munity due to both its large dimensionality and the complexity of information
it contains, thus requiring novel data analysis and modeling techniques. Initial
efforts targeted the inference of functional information for genes of unknown
functionality, by means of clustering techniques [2-3], while other approaches
used supervised learning techniques for discriminating between different sam-
ple classes (e.g. healthy vs disease tissue diagnosis) [4]. However, reconstructing
and modeling gene networks remains one of the central problems in functional
genomics.

The activity of genes is regulated by proteins and metabolites, which are pro-
duced by proteins. But proteins are also gene products, thus genes can influence
each other (induce or repress) through a chain of proteins and metabolites. At
genetic level, it is thus legitimate, and indeed common, to consider gene-gene
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interactions, and these lead to the concept of gene networks. Gene networks ul-
timately attempt to describe how genes or groups of genes interact with each
other and identify the complex regulatory mechanisms that control the activity
of genes in living cells. The reconstructed gene interaction models should be able
to provide biologists a range of hypotheses explaining the results of experiments
and suggesting optimal designs for further experiments.

The reconstruction of gene networks based on expression data is hampered
by peculiarities specific to this kind of data, therefore the methods employed
should be able to handle under-constrain data, must be robust to noise (since
experimental data obtained from microarrays are measurement noise-prone) and
should provide interpretable results. Recently, there have been several attempts
to describe models for gene networks. Boolean networks have been used due to
their computational simplicity and their ability to deal with noisy experimental
data [5]. However, the Boolean networks formalism assumes that a gene is either
on or off (no intermediate expression levels allowed) and the models derived have
inadequate dynamic resolution. Other approaches, reconstructing models using
differential equations, turn out as computationally expensive and very sensitive
to imprecise data [6], while Bayesian networks based models, although attractive
due to their ability to deal with stochastic aspects of gene expression and noisy
measurements, have the disadvantage of minimizing dynamical aspects of gene
regulation [7].

Our approach uses a recurrent neuro-fuzzy method [8] to extract information
from microarray data in the form of fuzzy rules, bringing together the advan-
tages of computational power and low-level learning common to neural networks,
and the high-level human-like reasoning of fuzzy systems. The dynamic aspects
of gene regulatory interactions are considered by the recurrent structure of the
neuro-fuzzy architecture we adopt, while the online learning algorithm drasti-
cally reduces the computational time.

Interactions among a set of target genes found to be highly involved in the
yeast cell cycle regulation from previous biological studies [9] are studied and
knowledge in the form of IF-THEN rules is inferred. The algorithm is trained
on a subset of experimental samples and the inferred relations are tested for
consistency on the remaining samples.

2 Methods

The computational approach we are using is that of a multilayer recurrent self-
organizing neuro-fuzzy inference network (RSONFIN) [8]. Being a hybrid neuro-
fuzzy architecture it is able to overcome drawbacks specific to pure neural net-
works, which function as black boxes, by incorporating elements specific to fuzzy
reasoning processes, where each node and weight has its own meaning and func-
tion. In addition, its recurrent structure manages to bring the same advantages
of a pure recurrent neural network (in terms of computational power and time
prediction), while succeeding to extend the application of the classic neuro-fuzzy
networks to temporal problems.
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A recurrent neural network naturally involves dynamic elements in the form
of feedback connections used as internal memories. Unlike the feed-forward neu-
ral network whose output is a function of its current inputs only and is limited
to static mapping recurrent neural networks perform dynamic mapping using
their ability to store information of the past (e.g. prior system states). From
this point of view a recurrent fuzzy neural structure seems like the best choice
to deal with time - series data, just like the ones used in the present work and
which are concerned with the measurement of genes expression in a number of
experiments throughout time.

In contrast to other neuro-fuzzy network architectures, where the network
structure is fixed and the rules should be assigned in advance, there are no
rules initially in the architecture we are considering; all of them are constructed
during on-line learning. Two learning phases, the structure and the parameter
learning phase are used to accomplish this task. The structure learning phase
is responsible for the generation of fuzzy if-then rules as well as the judgment
of the feedback configuration, and the parameter learning phase for the tuning
of free parameters of each dynamic rule (such as the shapes and positions of
membership functions), which is accomplished through repeated training from
the input - output patterns. The way the input space is partitioned determines
the number of rules. Given the scale and complexity of the data, the number
of possible rules describing the causal relationships is kept under constraint by
employing an aligned clustering-based partition method for the input space and
by allowing a scene in which rules with different preconditions may have the
same consequent part [8]. At the same time, the minimum number of fuzzy sets
we allow is set to three, the lowest for which, in the case of gene expression data,
we obtain adequate resolution.

The neuro-fuzzy system we are employing consists of a six-layer network,
including a feedback layer (see Fig.1). In the first layer each node represents an
input linguistic variable. No calculation takes place in this layer and each node
transfers the value of an input variable to the next layer.

Each node in the second layer corresponds to one linguistic label (e.g. high,
medium, low etc.) represented by a membership function, which has the following
Gaussian form:

y(2) = e

{
−
(

ϕ
(2)
i −mij

)/
σ2

ij

}
(1)

where mij and σij are the center and width, respectively, of the membership
function of the ith variable and the jth term, while by yk(n) and ϕ(n) we repre-
sent the input and output of the kth node and of the nth layer, throughout the
paper.

In the third layer, each node represents a fuzzy logic rule and performs a
precondition matching of a rule:

y(3) = y(6) · e−[Di(x−mi)]
T [Di(x−mi)] (2)

where mi is the center of the ith rule and Di is a diagonal matrix containing the
widths of the same rule.
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Fig. 1. Six-layer recurrent neuro-fuzzy network

The nodes of the fourth layer (output nodes) perform the following fuzzy OR
operation to integrate the fired rules which have the same consequent part:

y(4) =
∑

i

ϕ
(4)
i (3)

The fifth layer is responsible for the defuzzification operation. Nodes in this
layer together with the links attached to them perform the following task:

y(5) =
∑

i ϕ
(5)
i cij∑

i ϕ
(5)
i

(4)

where cij is the center of the ith membership function of the jth output variable.
Finally, there is the feedback layer, which calculates the internal variable hi

and its firing strength. The firing strength of the internal variable contributes to
the matching degree of a rule node in layer 3.

hj =
∑

i
y
(4)
i wij (5)

y(6) =
1

1 + e−hi
(6)

where wij is the weight connecting the ith feedback layer node with the jth node
of the 4th layer.

We have adapted the original model in order to achieve both higher accuracy,
as well as a more parsimonious structure. The modifications concern on one hand
the decision for the creation of a new rule and on the other hand the merging
of similar rules based on the similarity of the fuzzy sets of the input and output
variables.
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The extension of the model as far as the rule creation is concerned, consists
of a two criteria scheme, where the first criterion computes the overall error Ek

of the network for a new pattern based on:

‖Ek‖ =
∥∥yd

k − yk

∥∥ (7)

where yk is the prediction of the model for the output variable while yd
k is the

actual value for the same pattern.
The second criterion is based on the calculation of the distance di between

the pattern x and all the existing till point rules:

dk(j) = Dj ‖x − mj‖ , j = 1, 2, · · · , NR (8)

where NR is the number of the rules. Then we find:

dmin = argmin (dk (j)) (9)

If both criteria below are true then a new rule is created:

‖Ek‖ > λerror

dmin > λdist
(10)

where λerror = 0.47 and λdist = 0.54 are empirically set thresholds. The opera-
tion above occurs during the structure-learning phase of the model.

Regarding the merging of fuzzy rules, we have defined a procedure that takes
place during the parameter learning phase. Usually the fact that two rules have
different consequents but similar antecedents means that those two rules conflict
each other. Therefore we decide whether we can combine two rules by evaluating
the similarity of their antecedent part. Given for example two rules Ri and Rj

their antecedent parts are the fuzzy sets Ai1, Ai2,, Ain and Aj1, Aj2, , Ajn

respectively, where Akl is the kth fuzzy set of the lth fuzzy rule, the similarity
for the antecedents can be computed as:

S (Ai,Aj) = min
l

{S (Ail, Ajl)} , l = 1, 2, · · · , n (11)

if S(Ai, Aj) exceed a value ls (empirically ls might be set between 0.6 and 0.8)
then those fuzzy sets are considered to be similar enough and thus the rules
that they constitute can be combined towards the creation of a new rule Rc. For
the evaluation of the center and width of each one of the fuzzy sets Acl of the
new rule we use the average of the fuzzy sets Ail and Ajl, ccl = (cil + cjl)/2,
wcl = (wil + wjl)/2. The same technique is used for the two consequents.

For the similarity measure of two fuzzy sets we use the formula previously
derived in [10], which concerns bell - shaped membership functions. It should be
pointed out that the value of ls has an initial value that monotonically decreases
in time so that higher similarity between two fuzzy sets is allowed in the initial
stage of learning.

In order to recover functional relationships among genes and build models
describing their interactions we employ transcriptional data from microarray
experiments. A simple representation of the data would be that of a matrix
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with rows containing gene expression measurements over several experimental
conditions/ samples. Gene expression patterns give an indication of the levels
of activity of genes in the tissues under study. A number of network models
that match the number of genes is constructed, each model having as output
node a selected gene and input nodes the remaining genes from the dataset.
Models attempt to describe the behavior of the gene selected as output based
on possible interactions from the input genes and stores the knowledge on the
derived gene-gene interactions in a pool of fuzzy rules. It must be noted at
this point that although we are employing in the current study a data set with
reduced number of genes, our method can be easily extended to the analysis
of data sets containing thousands of genes, by introducing a clustering scheme
prior to the models construction. Representative genes can be selected from the
clusters as in [11] and subsequently fed to the neuro-fuzzy network.

For each model we have derived an error criterion, in order to test the model
accuracy on a given data set, by using an overall error measure based on the
difference between the prediction of the model for the output variable (i.e. gene)
- yi and its real value through all the samples of the data set - yd

i :

E =
1
n

n∑
i=1

[
1 −

|yi| −
∣∣yd

i

∣∣∣∣yd
i

∣∣
]

(12)

where n is the number of samples in the data set.
The number of rules governs the expressive power of the network. Intuitively,

an increase in the number of rules describing the gene interactions in a certain
model results in a decrease in the error measure of (1), accounted by the respec-
tive model. However, pursuing a low error measure may result in the network
becoming tuned to the particular training data set and exhibiting low perfor-
mance on the test sets (the well known overfitting problem). Therefore, the
problem becomes one of combinational optimization: minimize the number of
rules, while preserving the error measure at an adequate level by choosing an
optimal set of values for the model parameters (overlap degree between partition
clusters, learning rates, rule creation criteria).

The final rule base extracted from a certain dataset, which provides the
plausible hypotheses for gene interactions, is built by selecting the rules that are
consistent with all the models.

3 Results

To test the validity of our approach, we have used a dataset containing gene ex-
pression measurements during the cell-cycle of the budding yeast Saccharomyces
cerevisiae. The experiments were performed by Spellman etal. [12] and consisted
on 59 samples collected at different time points of the cell-cycle. The experiments
are divided into three subsets, which were named according to the synchroniza-
tion method used for the yeast cultures: cdc15 arrest (24 samples), cdc28 arrest
(17 samples) and alpha-factor (18 samples). Missing values were filled in using
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an estimation method based on Bayesian principal component analysis (BPCA),
which estimates simultaneously a probabilistic model and latent variables within
the framework of Bayes inference [13].

We have chosen a subset of 12 genes (see Table 1) on the basis that they
were identified from previous biological studies to be highly regulated during the
yeast cell-cycle, their protein products playing key roles in controlling the cyclic
biological processes [9]. The samples of the cdc15 subset were used as training
data for the neuro-fuzzy network and the inferred fuzzy rules were tested for
consistency on the other two experimental data subsets (alpha and cdc28). The
choice of the training set was determined by the larger number of samples in the
cdc15 experimental set and therefore a larger number of training instances.

We have used the recurrent neuro-fuzzy approach to create twelve multi-
input, single output models. Each model describes the state of an output gene
based on the temporal expression values of the remaining eleven genes. As al-
ready described in the methods section, the structure of each model is determined
by the on-line operation of the algorithm using the cdc15 subset as training set
and repeated training of the algorithm is subsequently used to fine tune the
membership functions as well as to determine the precondition and consequent
parts of the rules.

Each one of the networks constructed describes the time series of the output
gene through a number of fuzzy rules. Table 1 presents the set of rules describing
gene SWI4. Columns describe rules. The numbers correspond to membership
function values for each input variable - gene, expression level, i.e. 3 is high, 2
is medium and 1 is low (e.g. the second column contains the rule: ”If SIC1 is
low AND CLB5 is medium AND AND MBP1 is high AND CDC6 is low THEN
SWI4 is medium”).

Table 1. Rules describing the state of gene SWI4 based on the eleven remaining genes

of the original dataset cdc15

Input Genes Rules
Rule 1 Rule 2 Rule 3

SIC1 3 1 2
CLB5 3 2 1
CDC20 2 1 3
CLN3 3 1 2
SWI6 2 3 1
CLN1 3 2 1
CLN2 3 2 1
CLB6 3 2 1
CDC28 2 1 3
MBP1 2 3 1
CDC6 3 1 2

Prediction of SWI4 3 2 1
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Table 2 presents the prediction errors on all three data subsets (computed as
in Eq.1), as a relative measure of the models accuracy. The error scores shown
in Table 2, emphasize the correlation in qualitative behavior between the fit and
prediction and it has been used for the determination of the networks parameters
that best match the prediction of all the twelve models considered.

Table 2. Gene prediction errors for the training and testing data subsets

Name of Predicted Gene Prediction Errors
cdc15 cdc28 alpha

data set data set data set

SIC1 0.4129 0.4383 0.4400
CLB5 0.4842 0.3700 0.3965
CDC20 0.5608 0.5669 0.4135
CLN3 0.3179 0.3286 0.4129
SWI6 0.3336 0.1620 0.1588
CLN1 0.5371 0.4386 0.5765
CLN2 0.4374 0.4077 0.5188
CLB6 0.4725 0.5769 0.4753
SWI4 0.2429 0.4312 0.4959

CDC28 0.2058 0.2474 0.2141
MBP1 0.5958 0.2172 0.2382
CDC6 0.4446 0.3486 0.3441

In a parallel experiment, we have used the network models derived from the
training set to predict time series for the gene expression patterns. Figure 2
shows the predicted time series for the expression ratio of genes CLN1 and
SWI6 on both test data sets. It may be noticed that, while the former represents
a gene with worst error fits, still the model is able to predict trends of expression
values. In the case of the latter gene, the predicted patterns consistently fit the
real expression data, fact which proves the accuracy of the derived models.

In the final step of our analysis, the rule base describing the gene interactions
derived from the twelve models is used to build a gene network model (see Fig. 3)
in the form of a graph in which each node represents a gene and the presence of
an edge between two nodes indicates an interaction between the connected genes
(either activation - represented by arrows, or repression - represented by closed
circles). From a total of 36 rules derived by the 12 network models 19 were kept
as being consistent throughout the models, all of them being consistent with the
interactions retrieved by biological studies [9, 14].

Biologically accurate interactions have been successfully extracted using our
method, such as the positive regulation of CLB6 by MBP1, the inhibition of
CLB5 by CDC20, the positive regulation of CLN1 by CLN2 as well as the nega-
tive regulation of the same gene by CDC20. CLN3 activates by phosphorylation
the transcription factor group SBF (formed by SWI4 and SWI6), which in turn
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Fig. 2. Predictions of gene expression patterns. The two plots on the left represent

the predictions for gene CLN1, while the ones on the right for the gene SWI6. For

both genes the upper plot corresponds to the cdc28 data subset while the lower plot

corresponds to the alpha data subset (solid lines represent actual expression, while the

dotted ones the prediction of the model).

activates the cyclin CLN2. Other successfully found interactions include those
between CLB5 and CLB6, while MBP1 (part of the transcription factor group
MBF) is found to activate the cyclin CLB6. These are relations that besides their
biological confirmation have been determined by other approaches like [15], [16].
But there are cases like the positive regulation of SWI4 by MBP1 that both the
supervised learning analysis of Ref. [15], as well as the linear fuzzy approach of
Ref. [16] failed to extract. It should be noted that the last relation described
was successfully extracted despite the fact that the MBP1 transcription varies
within a small range, which could have lead to a potential error produced by the
model.

Fig. 3. Graph of the derived gene network interactions. The figure provides a schematic

of the rules extracted using all the models in our application.
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The results prove the accuracy and efficiency of our method in successfully
capturing the interactions among the genes considered, despite the noise inher-
ited from the microarray hybridization and the small amount of samples in the
data.

4 Conclusion

The paper presents a method to extract causal interaction relationships among
genes and tackle the inverse problem of gene regulatory networks reconstruction
from microarray expression data. To this goal, we have adapted a recurrent neu-
ral fuzzy architecture that is able to achieve the task in a fast and comprehensive
manner. The self-organizing structure of the method helps retrieving the optimal
number of relationships underlying the data, while its recurrent part is able to
take into account dynamic aspects of gene regulation. To our knowledge it is the
first application of a neural fuzzy approach for the problem of gene regulatory
networks reconstruction.

While our approach follows the current ideology regarding gene networks
reconstruction - focusing attention on specific subsystems that are easier to an-
alyze and feasible in terms of collecting necessary experimental data - it is able
to supply starting points for deciphering the multiple complex biological sys-
tems. The inferred information provides biological insights, which can be used
by biologists to design and interpret further experiments. The results prove the
solid performance of a hybrid neuro-fuzzy approach, which is able to extract
from a certain dataset more biological meaningful relations than other compu-
tational approaches. All the retrieved causal relationships among genes are in
complete accordance with the known biological interactions in the yeast cell-
cycle. Although the current study refers to a relatively small subset of genes, the
method could be adapted to process larger sets, eventually even entire genome-
scale expression data, from which subsets of genes involved in specific regulatory
processes might be identified through suitable gene selection methods.
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Abstract. The purpose of the X-ray macromolecular crystallography is
to determine the electron density distribution ρ(r) of the crystal and in-
terpret it by atoms. ρ(r) may be calculated by a Fourier series with com-
plex coefficients. Their magnitudes are available from X-ray-diffraction
experiment, however an accurate calculation of ρ(r) is often impossible
due to absence of estimates for corresponding arguments (phases) or their
insufficient accuracy. To define or improve the phase estimates a model
composed from ’dummy’ scatterers may be used. The number and size
of these scatterers depend on problem. At a conventional resolution the
scatterers similar to carbon atoms are used for phase improvement. When
phase information is not available models composed from a small number
of large scatterers presenting whole molecular domains may be used. In
another extreme case, at a subatomic resolution, scatterers presenting
partial atomic charges may be used to model the density deformation.

1 Introduction

The goal of macromolecular X-ray crystallography is to find the coordinates and
some other parameters like atomic displacement parameter, ADP, of atoms that
compose the crystal under study. A traditional way to do it is to measure the
intensities of X-rays diffracted by the electrons of the corresponding crystal, then
reconstruct the electron density distribution ρ(r) and then interpret it in terms
of atomic model (see Table 1 for basic definitions). The magnitudes F (s) of the
complex Fourier coefficients F(s) of the function ρ(r) may be derived directly
from these intensities but the arguments, or phases ϕ(s) of F(s) are lost in the
diffraction experiment. This makes the direct computing of ρ(r) as a Fourier
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synthesis impossible; the loss of phases is called the phase problem, its solution
is called phasing. Another problem is that the experimental set {Fobs(s)} of
magnitudes is always limited in resolution (see Table 1):

for s ∈ S({Fobs(s)} are available), |s| = 1/dmin.

This limit dmin is defined by the experimental conditions, in particular by the
wavelength of the X-rays used, and by the properties of the crystal, its inter-
nal disorder. In macromolecular crystallography the conventional resolution of
the diffraction data set, 2-3 Å and lower, is insufficient to visualize individual
atoms (minimal interatomic distances are about 1.0-1.5 Å) even when the phase
estimates became known.

The uncertainty in the phases may be essentially reduced supposing that
the electron density distribution is not an arbitrary function but one that may
be presented by a sum of contributions from individual atoms (atomicity of the
crystal). This atomicity plays the key role in phasing the data of small-molecules
crystals. In macromolecular crystallography, it was shown a while ago [36] that
even an incomplete and inexact atomic model helps in phasing and in further
model improvement. At the same time, to build such an initial atomic model
some relatively good phase values for structure factors of a resolution at least 2.5-
3.0 Å are required (except a special case when a model of a homologous structure
solved previously can be used). This situation presents a methodological loop
for a number of structural studies, and some break is needed to cut it.

This article discusses an approach (Section 2) to solve this problem by con-
structing an auxiliary model composed from artificial scatterers called dummy
atoms. Generally speaking, these dummy atoms have no relation to chemical
atoms (for a recent review see [32]). This idea of a description of a molecule
by such purely mathematical entities at a conventional resolution of 2-3 Å was
extended then to extreme cases of very low and ultra-high resolution shown in
Sections below.

2 Dummy Atoms and Phase Improvement

Interpretation of Fourier maps calculated with Fobs(s) and the phase estimates
ϕest(s) is based on the fact that its peaks correspond to individual atoms when
the phases are estimated relatively well and the resolution of the data set is high
enough, about 1 Å. When the phase quality and resolution are not so high, the
peaks correspond to whole atomic groups and no individual chemical atom can
be distinguished. However, the principle of atomicity is still valid. This suggests
building an auxiliary atomic model [4] where the ’atoms’ positioned in the peaks
of the map have no chemical meaning and are used only as an intermediate tool
to calculate new phase values ϕmod(s).

This nonlinear transformation of a Fourier map of a 2-3 Å to an atomic
model gives a possibility to calculate ϕmod(s) for all structure factors available
and not only for those used for the initial map calculation. The main question is
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Table 1. Crystallographic notion

Crystallographic notion Mathematical object Comments

ρ(r), electron density
distribution

3-dimensional peri-
odic non-negative
function

ρ(r) in the crystal is generated
mostly by atoms of the macro-
molecule plus by the solvent be-
tween the molecules

F(s) = F (s) expiϕ(s),
structure factor

complex Fourier coef-
ficient of the function
ρ(r)

diffraction experiment gives the
magnitudes F obs(s) for a set S={s}
of Fourier coefficients

s = (h,k,l), Miller indices
integer 3D index of
the Fourier coeffi-
cient

d(s), resolution of the
structure factor

1/|s| the smaller is d(s), the higher is the
resolution

dmin, resolution of the
set of structure factors

min d(s) for the set S
of structure factors

dmin corresponds to the minimal
size of a detail that can be dis-
tinguished at the corresponding
Fourier synthesis

R-factor
∑ |Fobs

(s)−Fmod
(s)|∑

Fobs
(s)

Fmod(s) are structure factors calcu-
lated from some model; Fmod(s) are
considered to be optimally scaled to
Fobs(s)

R-free-factor

R-factor calculated for structure
factors excluded from the refine-
ment (control data set)

refinement

search for the val-
ues of model pa-
rameters that min-
imize the R factor
or another crystallo-
graphic criterion

the criterion has a lot of local min-
ima; a good enough starting point
is necessary for a success of the re-
finement

whether ϕmod(s) are better than ϕest(s) and whether the addition of new struc-
ture factors with predicted phase values ϕmod(s) indeed improves the quality of
the starting image. (Crystallographers call these two processes of improving the
phase estimates as phase refinement and phase extension, respectively). When
an atomic model is built, one does not only ’interpret’ the starting synthesis but
gets a possibility to refine the parameters of this model to find a better one. This
model improvement does not mean that the dummy atoms move toward the po-
sitions of ’chemical atoms’ but simply that they reproduce better the structure
factors. The atomic parameters are used only to calculated structure factors and
are thrown away after this.
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These models [23,25] are composed from dummy atoms, completely virtual
objects allowed to be at any distance to each other and even to be superim-
posed. This feature is crucial to approximate large density peaks corresponding
to atomic groups. An optimized protocol of refinement of such a model [3,33] is
another key point of the procedure. In order to extract the phase information
from the refined model, a maximum-likelihood approach to estimate parameters
of the corresponding phase probability distribution has been developed [23]. The
whole procedure does not require high-resolution data neither for construction
of the starting model nor for refinement.

It is worthy of noting that till the end of 70th crystallographers used mechan-
ical models where each atom had a clear chemical meaning. The first dummy-
atom models [4] were similar to those mechanical models in the sense that there
were a number of restrictions on a mutual position of dummy atoms. These
restrictions made the models not optimal for the phasing. On the contrary, an-
other important feature of macromolecules to be branched chains of chemically
linked atoms was successfully used [38,8] to improve dummy-atom models. With
a progressive improvement of phases and corresponding Fourier maps, dummy
atom models evolve into mixed models [25] when a part of a crystal cell may
be already interpreted in terms of chemical atoms. Currently, when data quality
and resolution are reasonably high, the full model of chemical atoms may be
built automatically [19,27] starting from such dummy-atom models.

3 Dummy Atoms and Ab Initio Phasing

The term ab initio phasing is reserved in crystallography for the procedure of
the initial determination of phases using a single set of F obs(s) and information
of a general character, like atomicity of molecules and connectivity of atomic
chains.

Ab initio phasing is a search for the exact phase values ϕexact(s) for the
given set of structure factors. In general, the less is dimensionality of the search
space (the less is the number of structure factors with unknown phases) the more
chances to find the correct solution in a limited time. For example, one may start
phasing by selecting a few structure factors with largest values of magnitudes
thinking that basically these Fourier coefficients form the image. We have shown
previously that such images may be hardly interpretable [22]. Another possibility
is to start phasing from lowest-resolution reflections at the resolution of 10, 20
Å or lower, depending on the size of the object. Of coarse, corresponding images
do not show structural details but the obtained molecular shape and packing
may serve as a starting point for further phase (image) improvement as well as
may be the objects of interest themselves.

Dummy atoms models, already proven to be useful for phase improvement,
are also important mathematical tools for such an ab initio phasing. It is clear
that the models used for ab initio phasing of low-resolution reflections may be
composed only from a very limited number of dummy atoms in order to avoid
overfitting the data.
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3.1 Low-Resolution Models

The simplest model of a globular molecule is a sphere with a uniform or Gaussian-
distributed density inside [30,34,13,5]. More generally, a molecule of an arbitrary
shape may be modeled by a few large spheres; that gives the name Few-Atoms
Model (FAM) for this construction. These large spherical scatterers may be
considered as a new kind of dummy atoms, of a much larger size, and again
without any formal restriction on their mutual positions. The most trivial idea
is that the FAM giving the lowest R-factor between Fmod(s) and Fobs(s) indicates
the position of the molecule.

The multiple studies were done both for the simplest model composed from
a single dummy atom and for models composed from several spheres. For both
these groups of models it was observed that the positions of such dummy atoms
giving the minimal R-factor value do not necessarily coincide with the center of
the composing molecules or their principal domains [21]. In fact, this observation
is in line with the basic idea of dummy atoms: do not try to interpret such models
”chemically” but use them only as an intermediate tool to obtain the phases.
Therefore, the goal of a modified procedure may be changed to a search for the
FAMs that reproduce the best possible crystal structure factors regardless the
chemical meaning of the positions of corresponding large dummy atoms. One
may hope that a low R-factor means also a closeness of corresponding calculated
phases to unknown searched values. If it is the case, R-factor might be used as a
criterion to search for the correct phase set ϕexact(s). Multiple checks with both
calculated and experimental data show that this basic hypothesis generally is
not held either.

3.2 Few Atoms Model Phasing

More detailed analysis of FAMs provides one with an important observation
that if we generate a huge number of FAMs and take not a single best (by the
R-factor value) FAM but several hundreds of best models, a typical distribution
of corresponding phase sets may be described as follows.

Let’s define a distance between 2 sets of phases as a closeness of two Fourier
syntheses (for example, a least-squares distance between them) calculated with
Fobs(s) and these phase sets, respectively. With this measure, ϕmod(s) calculated
from the best FAMs are grouped in a very small number of clusters (usually 2 or 3)
with one of them close to the correct solution. We alreadymentioned that the phase
set for the FAM with the lowest R-factor does not necessary correspond to the cor-
rect cluster. Therefore, we cannot tell in advance which cluster is the correct one
and we process all of them. For each cluster the phase sets are averaged giving for
each structure factor its mean phase value and corresponding figure of merit [24].
This figure of merit reflects the dispersion of phase values among the sets. The
2-3 possible phase sets found from such averaging may be then analyzed one by
one applying other criteria. Otherwise, the final choice may be done at later steps
after eventual phase extension of all variants to a higher resolution. Multiple mod-
els composed from a smaller dummy atoms generated inside alternative envelopes
may be used as such a selective statistical tool [20,28].
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Fig. 1. Left: ab initio phased map at approximately 35 Å resolution for the ribosomal

50S particle from T. thermophilus, data by A. Yonath. Right: ab initio phased map at

14 Å resolution for myoglobin superimposed with Cα-atoms of the model.

The procedure [21,20] has been successfully applied to a number of experi-
mental data sets, both with a known answer and for unknown structures (e.g.,
Fig. 1).

4 Dummy Bond Electron Modeling

It is known from the study of small molecule crystals that in the Fourier maps of
the resolution of 0.5-0.7 Å one may observe not only individual atoms but even
the redistribution of the electron density from the isolated ’spherical atoms’.
This redistribution is caused by formation of interatomic bonds; as a review,
see [12]. This type of information is crucial for understanding the molecular
mechanism, and several years ago Lecomte and his collaborators have started
attempts of macromolecular studies at a subatomic resolution (for a review see
[15]). Due to these density deformation effects conventional models of spherical
atoms cannot reproduce well enough corresponding images and diffraction data
as they do in conventional studies at the resolution of about 1-3 Å. By this
reason, crystallographers switch to a multipolar model where the electron density
distribution of an individual atom is no more spherical but is presented by a
combination of spherical harmonics [6] (see also ref. in [12,18]). This approach
is very efficient for studies of small molecules, at the same time its transfer to
macromolecular studies is not so straightforward as it could be thought.

First, when one uses from the beginning the model composed from multipolar
atoms, he imposes the presence of the bond density. Therefore, density peaks
at the bonds are no more a feature of the experimental data but that of the
model and the corresponding maps are no more an experimental proof of such a
density (see e.g. [26]). Second, the multipolar models are described by about 30
parameters per atom instead of 10 parameters per atom for a model of spherical
atoms with anisotropic ADPs. This increase in the number of parameters is
not crucial for crystals of small molecules diffracting regularly to 0.5-0.6 Å; at
such a resolution the number of Fobs(s) is sufficient to refine multipolar models.
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Currently for macromolecular crystals most of data sets available at a subatomic
resolution have the resolution of 0.8-0.9 Å. At this resolution the number of
Fobs(s) is significantly smaller that at 0.5-0.6 Å, the multipolar models overfit
the data and their refinement becomes unjustified. Third, the computational
algorithms for multipolar modeling become too time consuming due to a huge
growth of the number of parameters and structure factors at such resolutions.

Resuming the problem of macromolecular studies at subatomic resolution, we
need a model that does not have many more parameters in comparison with the
conventional models, for which the parts corresponding to density deformation
can be easily removed and for which fast refinement algorithms can be applied
or developed.

4.1 Dummy Bond Electrons

Alternatively to multipolar models that decompose the electron density into
non-spherical ’atomic bricks’, we may complete our conventional spherical-atom
model by next-level ’mathematical’ entities, new dummy atoms. These correcting
scatterers may be at any moment removed from the model allowing to check if
indeed they should be included or not. As previously, we do not care about phys-
ical interpretation of these new dummy atoms but use them as a mathematical
tool to reproduce corresponding structure factors as good as possible.

The Fourier maps give the most of deformation density in the form of roughly
spherical peaks at the given position near the ’chemical’ atoms. Each such a
complementary peak may be modeled by a Gaussian, that we call Dummy Bond
Electron (DBE). Each DBE may require 2-3 parameters to be refined (shape of
the peak and eventually its position along a given direction) resulting in total in
12-13 parameters per atom and not about 30 as in a multipolar model. In fact,
in a number of studies of small molecular crystals a modeling of the deformation
density peaks by point scatterers was tried previously (for example, [9,11,14,29])
but without a clear illustration of its advantages. We have proven the efficiency
of DBE models in studies of macromolecular crystals applying various statistical
criteria, e.g. R-free [10], that is possible here due to a very large number of
experimental structure factor magnitudes available.

The electron density has been calculated by quantum-chemistry methods
[31] for various individual amino-acid and nucleic-acid residues, the deformation
density peaks were approximated by a Gaussian function forming a sort of a
library (some similarity may be noted with the calculated database of multipolar
models [35]). Then, for a given macromolecular model any set of DBE may be
added at known positions with respect to heavy (non-hydrogen) atoms. We have
shown also that fast refinement algorithms are easily applicable to DBE models
[2] at a subatomic resolution.

4.2 Analysis of Density Deformation Maps and DBE Validation

In order to understand which molecular regions need DBE corrections, a series of
tests with calculated and experimental data [7,37,17] has been carried out. They
confirmed that even at the resolution of 0.9 Å the deformation density may be
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Fig. 2. Deformation density map calculated at the resolution of 0.9 Å for the protein

RD1 [17]. The phases are calculated from a conventional model refined at 0.9 Å (left)

and 0.6 Å (right).

Table 2. Comparison of R-factors for different models. Refinement of a multipolar

model for Leu-enkephaline at 0.9 Å is unreasonable due to a too large number of

parameters with respect to the number of data.

Crystal, model resolution Ndata Nparam R Rfree

Leu-enkephaline 0.90 Å 1887
- spherical anisotr. 474 2.91 3.70
- multipolar 1677 - -
- DBE 658 2.17 3.17

Leu-enkephaline 0.56 Å 6894
- spherical anisotr. 474 9.08 9.74
- multipolar 1677 7.90 8.63
- DBE 658 8.12 8.76

Antifreeze protein RD1 0.62 Å 106652
- spherical anisotr. 3713 13.7 15.5
- DBE 5469 12.5 14.1

clearly observed. At the same time, as it has been pointed out previously [16],
ADPs of bonded atoms (where DBE is supposed to be inserted) should not be
too high. More interestingly, we noted [1] that these deformation density peaks
are seen at the maps of 0.9 Å resolution if the model was refined at the resolution
of 0.6 Å but they surprisingly disappear if the refinement was done only at 0.9 Å.
In fact, refinement at the resolution of 0.9 Å or lower artificially increases ADPs
values, and these too large values ”hide” the deformation density. At the same
time refinement at a higher resolution makes ADPs values more correct (Fig. 2).

Our tests confirmed that including the DBEs improves the quality of the
models (Table 2). Interestingly, this improvement was observed even at a higher
resolution while initially the DBE model was aimed to work at about 0.9 Å.
As expected, the presence of DBEs during refinement corrects ADPs of heavy
atoms and the phases calculated from the model. This improvement conserves
the deformation-density peaks in Fourier maps of a resolution of at 0.9 Å even
when the DBEs are excluded from the model at the stage when the structure
factors are computed.
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Fig. 3. Schematic presentation of the classical situation (left) and the ’cut’ of this loop

using dummy atoms (DA) at different scales (right). One FAM-scale DA corresponds

to a molecular domain or to a whole molecule; one DBE-scale DA corresponds to a

part of an atomic density.

5 Conclusion

This article shows the variety of applications of models composed from artificial
scatterers (dummy atoms) that are irrelevant to chemical atoms. The original
idea is based on a similarity of dummy atoms and chemical atoms in size. At the
same time, in the direct-phasing FAM method each dummy atom is comparable
in size with an atomic domain or the whole molecule while DBEs simulate small
parts of the electron density of individual atoms (Fig. 3). All together, these
techniques clearly illustrate the importance of a ’different-scale atomicity’ in
macromolecular crystallography and usefulness of mathematical abstractions for
structural modeling.
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Abstract. One of the major challenges in the post genomic era consists
in exploiting the vast amounts of biological data stored in the numerous
heterogeneous biological databases distributed worldwide. Most research
projects in bioinformatics start with data retrieval from selected sources.
However, identifying appropriate data sources is not trivial and requires
the representation of the knowledge about data sources. We present here
the BioRegistry project which aims at providing means to represent and
exploit knowledge associated with biological databases. As a first step, a
repository structure has been designed to organise metadata associated
with databases consisting of five metadata categories: database identifi-
cation, topics covered, quality information, access/availability, and track-
ing of the metadata. The BioRegistry model and its relationships with
the DCMI (Dublin Core Metadata Initiative) are described. Prototypes
with various functionalities to feed, maintain and exploit the repository
are presented.

1 Introduction

Biological datasets have tremendously grown in size and complexity in the past
few years. Genome sequences, biomolecule structures, expression arrays, pro-
teomics represent terabytes of data which are stored under various formats in
distributed heterogeneous databases. More than 700 such databases have been
listed at the beginning of the current year [1]. The extraction of knowledge from
all these data is a crucial challenging task which ultimately gives sense to the
tremendous data production effort with respect to domains such as evolution and
disease understanding, biotechnologies, systems biology, pharmacogenomics, etc.

Knowledge discovery in databases (KDD) is a well-known process [2] that
starts with two important steps: data selection from appropriate databases and
data integration. In the biological domain, these tasks are hampered by various
difficulties in terms of (i) identifying and characterising the relevant databases,
(ii) designing data models to integrate the complex and distributed data. This
paper deals with the first set of difficulties. We present here the BioRegistry
project as a resource for cataloguing biological databases and facilitating relevant
source discovery by querying and/or browsing.

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 46–56, 2005.
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After a short survey of the biological data integration context, we will ex-
plain the rationale of the project and present the model that has been designed
to organise information about biological databases. We will then describe one
attempt to automatically import the database descriptions from an existing re-
source. Implementation of various functionalities around the BioRegistry catalog
will be presented and discussed in the perspective of future exploitation of this
resource.

2 State of the Art

2.1 Biological Data Integration

Access to biological data in databases obviously necessitates, as a first step, the
identification of relevant data sources. For example, the apparently simple query:
“Which genes from the human X chromosome are preferentially expressed in the
brain?” deals with both mapping and expression data which may or may not
be contained in a single source at a given time. Most probably more than one
data source can be found for each part of the query. The user may select one
source because of a given quality criteria (e.g. manual revision of the data or
update frequency) or availability information (e.g. access constraints). Once the
relevant data sources have been selected, the user will need help for querying
multiple data sources and getting integrated results.

Querying heterogeneous data sources and biological data integration have
appeared as challenging problems in bioinformatics in 1995 [3,4,5]. Since then,
numerous solutions have been proposed either through unified query interfaces
(SRS, ENTREZ), data warehouses (GUS), database federations (SEMEDA [6],
DISCOVERYLINK) or mediation architectures (TAMBIS, TINet, [7]). Web
services are being developed today to standardise interactions with databases
[8,9,10], thus allowing programs to automatically retrieve data from databases
along with user-defined scenarios.

However, the choice of relevant data sources, given a user need, remains a
major bottleneck, still poorly addressed by the expert himself. Who can claim
to know the characteristics of all available biological databases at a given time?
How can one express the criteria that will lead to the selection of the most
relevant databases for a given query?

A few integrated architectures have dealt with the latter problem and mod-
ules capable of relating appropriate databases to user queries or sub-queries have
been developed. In the mediation system TAMBIS [11] for instance, a knowledge
base has been created to automatically associate query concepts and databases
relative to these concepts. The TAMBIS ontology (TaO), which represents con-
cepts in molecular biology and bioinformatics, is used to express both user query
and source metadata in the same formalism so that queries can be automatically
directed to matching sources. However, a dozen of databases only is taken into
account by the system, so the usage of TAMBIS is rather limited.

A similar situation exists in the BioMediator architecture [12] in which a
knowledge base contains the mediation schema represented as a hierarchy of
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concepts and a hierarchy of relations between concepts, annotations to explain
how relations between data sources are obtained and maintained, and a catalog
describing for each available data source the elements of the mediation schema
they contain. Like in TAMBIS only a small number of sources, those that can
be queried by the system, are described in the knowledge base. Other examples
such as (BIS [13], BioDataServer [14], HKIS[15]) also illustrate that automatic
source-query matching in mediation platforms yet only addresses a small number
of pre-selected sources. Today, the exploitation of all available data sources still
requires manual interaction between a user and a catalog of databases.

2.2 Existing Biological Databases Catalogs

The 2005 inventory of molecular biology databases published in NAR [1] is organ-
ised according to a pre-established hierarchy grouping together the databases ac-
cording to a category list1: Nucleotide Sequence, RNA sequence, Protein
sequence, Structure, etc. For each source, a summary paper is available with
authors, citations, description and URL. Querying capabilities are still rather
limited.

Thematic web portals such as the BioMed Central Database Gateway2, the
BioNetbook3 at Pasteur Institute, the German site ”bioinformatik”4, Amos
Bairoch’s links at SwissProt5, etc. provide access to numerous databases and
resources. The classification provided by the portal may guide the user for se-
lecting possible relevant databases. Manual exploration of the database sites and
documentations is then necessary to refine the selection.

The DBCAT catalog, created and maintained by INFOBIOGEN [16], is prob-
ably the most structured catalog for molecular biology databases available so
far (more than 500 databases). This flat file repository of structured metadata
stores, for each database, information such as Source Name, Domain covered by
the source, Citation, Update Frequency, access URLs. Another catalog named
BioCAT has been designed in a similar manner for bioinformatic tools and is
maintained at EBI in the frame of a collaboration between EBI and INFOBIO-
GEN. In both resources, querying is possible through each field of the semi-
structured format. However, apart from the Domain value, most field domains
are open thus limiting the querying capabilities.

2.3 Rationale for the BioRegistry Project

This brief survey reveals the limits of existing solutions to the problem of
identifying relevant data sources given a query or a user-need. To one extent
(section 2.1), sophisticated integration models are designed to carry out this

1 http://www3.oup.co.uk/nar/database/c/
2 http://databases.biomedcentral.com/search
3 http://www.pasteur.fr/recherche/BNB/bnb-en.html
4 http://wwww.bioinformatik.de/cgi-bin/browse/Catalog/Databases/
5 http://www.expasy.org/alinks.html
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task. However, model complexity hampers large scale instantiation and the re-
sulting systems poorly reflect the diversity of biological databases. To the other
extent (section 2.2), users are faced with simple portals or catalogs, which give
access to a large number of databases but offer quite poor query possibilities.
More satisfying solutions should combine extensive representation of available
databases and advanced discovery capabilities.

Inspiration may come from the closely related field of web services. In a
web service architecture, the task of locating a relevant web service for a given
application (”matchmaker” service) is usually performed inside a web service
registry. The three well-known bioinformatic web service projects: MyGrid, Bio-
Moby and Semantic Moby, have reported attempts to enrich the basic model
of web service registry (UDDI) in order to augment the discovery capabilities
(discussed in [17]). For instance, the MyGrid project has enriched the UDDI
registry service with the ability of storing semantic metadata about the services it
contains and has experimented with searches over this store driven by reasoning
engine technology [18]. The main issue is then how to have all service providers
registering their services with appropriate metadata and how to spread this
augmented version of the registry service [19].

In the case of biological databases, not enough web services are yet deployed
to allow retrieval of any desired data from any available database. We thus de-
cided to create a biological databases registry called ”BioRegistry”, in which var-
ious metadata attached to biological databases are organised in a flexible and
structured manner, enabling knowledge modelling about biological databases
and advanced discovery capabilities. Various aspects of this work such as meta-
data valuation and exploitation using existing ontologies may reveal useful for
web service registries.

3 The BioRegistry Model

Metadata (data about data) describe the content, quality, condition, and other
characteristics of data. They play an important role in indexing, documentation
and retrieval tasks. In 1995, an international committee of experts has proposed a
standard model to describe metadata relative to web resources: the Dublin Core
Metadata Initiative or DCMI [20]. This standard is composed of a core set of
15 elements including: title, creator, subject, description, publisher, contributor,
date, type, format, identifier, source, language, relation, coverage, and rights 6.

Although the DCMI metadata model is intended to remain very simple and
general, it provides two mechanisms that allow making more precise statements.
Firstly, DCMI provides several ”element refinements”. For example ”created”
(dcterms:created) refines ”date” (dc:date) to represent a date of creation. Sec-
ondly, DCMI defines several ”encoding schemes” such as ”vocabulary encoding
schemes” which specify that a value is a term from a controlled vocabulary, or
”syntax encoding schemes” that specify that a value is formatted in accordance

6 http://dublincore.org/documents/dcmi-terms/
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Fig. 1. Schematic representation of the BioRegistry metadata model

with some set of rules (e.g. date in the W3CDTF format YYYY-MM-DD).
Nevertheless, describing resources in a particular domain still requires intro-
ducing some extensions. For instance, the Federal Geographic Data Commit-
tee (FGDC7) has built and approved in 1998 the Content Standard for Digital
Geospatial Metadata. The complexity and specificities of biological databases
also lead us to investigate which metadata could be attached to these databases
and to propose a hierarchical model for organising these metadata. The BioReg-
istry metadata model (schematised in Figure 1) contains 3 sections. The first
represents metadata associated with biological databases. The second describes
ontologies and/or controlled vocabularies from which metadata terms can be ex-
tracted. The third is dedicated to relationships between databases. In this paper,
we will mostly comment on the first section of the BioRegistry model. Choices
of relevant metadata were performed by taking into consideration user needs.
Five categories have been identified:

– Database identification: many DCMI elements have been used here:identifier,
title, alternative, creator, bibliographicCitation, description, temporal (cov-
erage), created (date), modified (date).

– Topics covered by the database: this category is divided into two parts,
the subjects covered by the data sources (DCMI element subject) and the

7 http://www.fgdc.gov/fgdc/fgdc.html
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organisms concerned (for example the Rat Genome Database contains data
concerning the Rat organism).

– Database quality: in this category, many useful items are absent from the
DCMI but crucial in the biological domain to document the quality of a
database with respect to entry revision (manual or automatic), the existence
of documentation and cross-references to other databases, update and release
frequencies. The DCMI element refinement conformsTo was used to specify
standard compliance (for example the MIAME standard for expression data)

– Database availability: this category contains the DCMI publisher element
together with the various URL providing access to the database and de-
scription of access constraints for academic or industrial communities (free,
registration required, fees).

– Metadata tracking: this category is aimed at tracking the possible modifica-
tions brought to metadata by the reviewers of the BioRegistry repository.

According to DCMI recommendations, standard data types are involved
wherever possible (for example dates and time ranges at format W3CDTF).
Most importantly, existing controlled vocabularies and/or domain ontologies are
used to fill metadata fields where appropriate.

The field on subjects for instance contains terms extracted from the biomed-
ical thesaurus MeSH, maintained by NLM8. This thesaurus was chosen because
it is widely used to index scientific literature, it presents a broad coverage of
many biological domains and is regularly updated to take into account changes
in the topics addressed by scientific papers. It should be mentioned also that it is
already present as a DCMI encoding scheme. However, more focused vocabular-
ies/ontologies may also be used in the future. Concerning the field on organisms
the NCBI taxonomy9 of living organisms has been chosen since this taxonomy
is also used to annotate biological sequences.

Besides the Metadata section, the BioRegistry model contains a section on
Ontologies for describing and referencing the ontologies. Reference to the ap-
propriate vocabulary/ontology is then associated with each term present in the
fields on subjects and organisms as for DCMI encoding schemes. New vocabu-
laries/ontologies can be added if needed.

The third section of the BioRegistry model will contain metadata represent-
ing relationships between databases. Here again some DCMI fields can apply:
hasPart, isPartOf, isReferencedBy, references, isReplacedBy, etc..

The BioRegistry has been implemented as an XML schema available at
http://bioinfo.loria.fr/Members/devignes/Bioregistry/SchemaBioregistry. The
hierarchical structure of the model is efficiently represented in the schema for-
malism. In addition, the schema specification allows one to define types and
constraints on the metadata to enter into the BioRegistry, which may in turn
facilitate editing of the BioRegistry content.

8 http://www.nlm.nih.gov/mesh/
9 http://www.ncbi.nlm.nih.gov/Taxonomy/
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4 Populating the BioRegistry

In the first stage of the work, the inclusion of several databases in the BioReg-
istry repository has been performed manually. Examples of collected metadata
are visible on the BioRegistry web page10 for about 14 databases. To accelerate
the process, an automatic procedure was designed to incorporate metadata from
the DBCAT catalogue into the BioRegistry model. For some DBCAT fields the
correspondence with BioRegistry elements is obvious. This is the case for the
BioRegistry Title, Contact, bibliographicCitation, Description, update and re-
lease frequencies, accessURL elements for which values were directly imported
from the corresponding fields in the DBCAT file. In order to fill the BioRegistry
topic information subsection, several algorithms are designed to further exploit
DBCAT content. The constraint here is to translate the DBCAT information
into controlled vocabulary terms (DCMI encoding-schemes). The main appli-
cation field of a database is represented in the Domain field of the DBCAT
catalogue (DNA, RNA, Protein, Genomic, Mapping, Protein Structure, Litera-
ture, Miscellaneous). This leads us to convert these metadata (as well as their
misspelled, synonymous or multilingual forms) into a few MeSH terms (Table 1)
to be entered in the subjects subsection of the BioRegistry repository. Additional
MeSH terms are also retrieved from MedLine as those indexing the publications
referred to in the DBCAT citation field. Analysis of the results actually reveal
that this latter procedure yield quite abundant noise. Some filters should be
included before entering all MeSH terms into the BioRegistry document.

Since the DBCAT catalogue does not contain any field related to the organ-
isms concerned with the data in a given database, the DBCAT Description field
is parsed to retrieve any matching terms with the NCBI taxonomy. Retrieved
terms are entered in the field on organisms of the BioRegistry repository. This
procedure reveals to be very helpful in extracting appropriate organism names
as long as these are mentioned in the DBCAT Description field.

The DBCAT catalogue has not been updated since 2001. To avoid entering
obsolete hyperlinks in the BioRegistry repository, each of the URLs extracted
from the DBCAT files is tested before writing it into the BioRegistry file.

Automatically created XML files (one per database, i.e. 509) are currently
being manually checked and curated thanks to an editor, developed as a java
application (BioRegistry Metadata Editor) and capable of checking the schema-
specified constraints. Once curated and validated, individual XML files can be
imported into the BioRegistry repository.

Additional automatic or semi-automatic procedures to populate and update
the BioRegistry will be developed in the future. Exploitation of the Nucleic
Acids Research 2005 compilation of molecular biology databases maintained at
NCBI [1] is envisaged. Alert and survey mechanisms have to be designed to
detect any change or new release in existing databases as well as new databases
appearing on the web.

10 http://bioinfo.loria.fr/Members/devignes/Bioregistry/presentationBioregistry/
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Table 1. Correspondence between DBCAT Domain values and MeSH terms to be

entered into the BioRegistry repository

Domain
Derived
values

MeSH term TermID
Tree
Number

DNA
Adn
Dna

DNA D004247 D13.444.308

RNA Rna RNA D012313 D13.444.735

Protein

PROT
Prot
Proteins
PROTEIN

Proteins D011506 D12.776

Genomic

GENOMIC
GENOMICS
Pathway
maps

Genomic D023281 G01.273.343.350

Mapping MAP Chromosome Mapping D002874 E05.393.183

Protein
Structure

Protein
structure
(3D)

Protein Conformation D011487 G06.184.603.790.709

Literature
LIT
Lit
Litterature

Information Services D007255 L01.453

Miscellaneous
Misc
MISC

None

5 Querying the BioRegistry

A first exploitation of the BioRegistry is form-based querying, triggering struc-
tured information retrieval of the metadata. This task is highly analogous to an
information retrieval problem in which databases, instead of documents, would be
searched for, and where indexation would be based on metadata reflecting infor-
mation about the databases rather than on the data extracted from documents. In
addition to the topics addressed by the databases, user queries may involve other
criteria such as data quality (documentation, update frequency, manual revision,
etc.) or data availability (access constraints, etc.). The BioRegistry should allow
the biologist to formulate a multi-criteria query combining various metadata cat-
egories and to recover a sorted list of data sources with metadata matching more
or less the query. A similarity calculation measure for matching attribute-value
pairs will be used to perfom the sorting of the BioRegistry sources with regard
to the user-query. This measure will be built according to the local-global princi-
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ple which consists in defining local similarity measures on the different metadata
fields (or attributes) and choose an aggregation (or amalgamation) function to
define a global similarity measure. In particular, for an ontology-based metadata
(i.e., subjects and organisms), the local similarity measure will take into account
the hierarchical or taxonomic links between the terms [21].

Browsing through the BioRegistry repository is an alternative to form-based
querying in the process of database discovery. The structured organisation of meta-
data in the BioRegistry model allows easy extraction of various sets of databases
and/or metadata, thus offering numerous possibilities to create customised views
over the biological databases. Once a given set of databases and metadata has
been selected (for example the ”subjects” of all the databases in the repository,
or the metadata associated with only the databases dealing with ”human” or-
ganism), methods such as formal concept analysis [22,23] can be adopted to vi-
sualise the sharing of metadata across the databases. An attempt to represent
the BioRegistry content in the frame of formal concept analysis, inspired by the
work [24] in the field of information retrieval, has been published elsewhere [25,26].
In both approaches, controlled vocabularies and ontologies, used to fill the fields
on subjects and organisms, can be exploited as a means to query re-formulation
and/or refinement in order to improve the recall as in [27,28].

6 Discussion

The metadata model described here for biological databases is the core compo-
nent of the BioRegistry project. The first objective fulfilled by this component is
to facilitate and optimise the selection of relevant databases to query in a given
context. Efforts are underway to populate this repository in the most exhaustive
and updated manner. Contacts with scientific and technical information (STI)
institutions such as INIST (http://www.inist.fr/) in France and NCBI in the
USA have been made. An international committee should be set up to propose
this description of biological databases metadata as a standard to the bioinfor-
matic community. Ideally in the future, any person involved in the construction
or maintenance of a biological database should be able to fill in a BioRegistry
submission form online in order to enter his database into the repository.

The next objective of the BioRegistry project is to offer a mediation possi-
bility to relevant databases and to assist users in the design and execution of
scenarios/workflows. This will require (i) implementing and exploiting the third
section of the BioRegistry model concerning relationships between databases,
(ii) enriching the BioRegistry model with a description of the programming in-
terface required for invoking a database. Ultimately, this will enable the BioReg-
istry project to take into account biological web services.
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Abstract. In the present paper we explain the basic ideas of Robust
Perron Cluster Analysis (PCCA+) and exemplify the different applica-
tion areas of this new and powerful method. Recently, Deuflhard and
Weber [5] proposed PCCA+ as a new cluster algorithm in conformation
dynamics for computational drug design. This method was originally de-
signed for the identification of almost invariant subsets of states in a
Markov chain. As an advantage, PCCA+ provides an indicator for the
number of clusters. It turned out that PCCA+ can also be applied to
other problems in life science. We are going to show how it serves for the
clustering of gene expression data stemming from breast cancer research
[20]. We also demonstrate that PCCA+ can be used for the clustering
of HIV protease inhibitors corresponding to their activity. In theoretical
chemistry, PCCA+ is applied to the analysis of metastable ensembles in
monomolecular kinetics, which is a tool for RNA folding [21].

1 Introduction

The application and improvement of cluster algorithms plays an important role
in several areas of computational life science. Given a number of N objects
q ∈ Ω with certain features, we are interested in identifying objects with similar
behaviour in order to combine them into NC clusters. For this purpose, we want
to construct membership functions yi : Ω → [0, 1], i = 1, . . . , NC , NC � N ,
which form a partition of unity. Then, each object in Ω can be assigned to the
clusters with certain weights given by the values of the membership functions.
A cluster can be considered as a vector that remains almost invariant under the
action of a matrix T , i.e.

Tyi ≈ yi. (1)

In molecular dynamics, T is the discretised version of a spatial transition
operator [14] and clusters are conformations for which the large scale geometric
structure is conserved. In this case, the matrix T contains transition probabilities
between different conformations. In general, T must be a row stochastic matrix.
For example, it can result from the normalisation of a symmetric matrix whose
entries represent some pairwise similarity measure, e.g. a covariance matrix.

Equation (1) is similar to an eigenvalue problem for an eigenvalue near λ = 1.
A perturbation analysis shows that the space of eigenvectors of T corresponding
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to eigenvalues near λ = 1 indicates a partition of Ω into the clusters we are
looking for [4]. In Robust Perron Cluster Analysis, the space spanned by the
membership functions yi equals the space of the NC first eigenvectors of T . In this
case, the number NC of clusters equals the number of discrete eigenvalues of T
near λ1 = 1. If each object is uniquely assigned to a cluster, then a rearranging of
the rows and columns of T results in an almost block diagonal matrix. Therefore,
the identification of clusters can also be seen as a detection of the almost block
diagonal structure of T .

There are several other spectral methods which can be applied to reduce the
dimensionality of given data. For example, Principle Component Analysis (PCA)
and Independent Component Analysis (ICA) use the eigenvectors of a covariance
matrix to compute a set of important directions within the data. However, they
fail to separate non-overlapping data sets. An illustrative example can be found
in [7]. PCCA+ was especially designed to identify spatially separated clusters
and is close to Laplacian projection methods used in graph partitioning [20] [18],
for example the relaxation of the normalised cut minimisation problem used by
Shi and Malik [16] and the Multicut Algorithm by Meila and Shi [11]. The main
differences between Robust Perron Cluster Analysis and these methods are:

– The results of Perron Cluster Analysis are given in terms of almost charac-
teristic functions, i.e. fuzzy sets.

– These functions are a simple linear transformation of the eigenfunctions of
the operator T .

– There is a detailed perturbation analysis for the PCCA+ approach based on
Markov chain theory, which provides robustness of this method.

2 Robust Perron Cluster Analysis Approach

The basis for Robust Perron Cluster Analysis is a stochastic matrix T ∈ IRN×N

with an eigenvalue cluster near 1. The clusters we are looking for are represented
by vectors yi, i = 1, . . . , NC , combined into a nonnegative matrix Y ∈ IRN×NC .
In order to meet the partition-of-unity constraint, Y has to be row stochastic,
see also [3]. Since Y should fulfil

Tyi ≈ yi,

the idea of PCCA+ is to construct Y as a linear transformation of the matrix
X ∈ IRN×NC , which contains the NC first eigenvectors of T corresponding to
eigenvalues near λ1 = 1, see [5]. Therefore, the task for PCCA+ is to find a
corresponding transformation matrix A ∈ IRNC×NC , such that

Y = AX

is a nonnegative, row stochastic matrix. Since there are many feasible solutions,
one searches for a solution which maximises the functional
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n∑
i=1

〈yi, T yi〉π
〈yi, e〉π

→ max,

where e = (1, . . . , 1) is a constant vector, yi is the ith column of Y and 〈·〉π is a
π-weighted inner product with the unique invariant row vector which meets π =
πT . If the stochastic matrix T is the discretisation of a transition operator, then
this is equivalent to the maximisation of metastability [5]. If the stochastic matrix
is constructed based on a geometrical cluster problem (see below), then this
optimisation problem minimises the overlap between different clusters. Instead
of solving a constrained optimisation problem, another approach tries to find
an optimal initial guess A wrt. the maximisation problem without regarding
the non-negativity constraint for Y [20]. The smallest entry of Y , the so-called
minChi-indicator, measures the feasibility of the initial guess as a solution of the
clustering. This is also applied in order to determine NC , i.e. the correct number
of clusters. The minChi-indicator is used for the geometrical cluster problems
shown in this paper.

For an application of Robust Perron Cluster Analysis in conformation dy-
namics see [5]. Now, we will give some other application examples for PCCA+.

3 Graph-Based Spectral Clustering via PCCA+

Suppose we want to cluster No ∈ IN objects, each of them described by Nf ∈ IN
features given by real numbers. That means we have to apply PCCA+ to an
No × Nf real valued object-feature-matrix X . As input for PCCA+, we need
an No × No diagonalisable stochastic matrix T which measures the similarity
between objects in some sense. For this purpose, T is constructed out of a sym-
metric nonnegative matrix W ∈ No×No by scaling its rows to row sum 1, see [20].
The symmetric matrix W can be seen as weight matrix for an undirected graph
where each object is represented by a vertex. The pairwise similarities between
these vertices are expressed by weights of the corresponding edges. One exam-
ple for computing this weight matrix can be taken from our analysis of gene
expression data [20] in cooperation with the Max Planck Institute for Molecular
Genetics. With some parameter β > 0, the weight W (i, j) of the edge between
object i and object j is defined as

W (i, j) = exp(−β d2(i, j)),

where d(i, j) denotes the standard Euclidean distance between the ith and the
jth row of X interpreted as vector in the Nf -dimensional space.

As an example, we examined the expression data of Nf = 2000 genes taken
from No = 50 breast cancer patients. As preprocessing, we rescaled the features
to zero mean and variance 1. After constructing T , we applied PCCA+ and got
two clusters1 y1, y2. Each patient i ∈ {1, . . . , No} was assigned to the cluster
1 The minChi-indicator also allowed more than two clusters, NC = 2 has been chosen

in order to compare the results of PCCA+ with results from literature [20].
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Fig. 1. Comparison of survival curves resulting from PCCA+ applied to gene expres-

sion data of breast cancer research

k = 1, 2, for which yk > 0.5. In Figure 1 we compared the survival time of these
two groups of patients and recognised a significant difference. The low p-value
denotes the probability, that the difference of these two curves arises randomly.
For a comparison with other clustering methods see [20].

A second example for a graph based clustering turns up in the research of
HIV protease inhibitors. We examined data kindly provided by Martin Däumer
and Rolf Kaiser from the Institute of Virology, Cologne University, and Joachim
Selbig from the Department of Biochemistry and Biology at the University of
Potsdam [1]. The aim of this project is to find out if structural similarities
between different inhibitors imply functional similarities. In a first step it was
examined how good No = 7 different protease inhibitors bind to Nf = 2311
different mutants of HIV protease which are described by their genotype. This

1 2 3 4 5 6 7

1

1 2 3 4 5 6 7

1

Fig. 2. Two clusterings of seven HIV protease inhibitors on the basis of 2311 HIV

mutants. The computation of the activity coefficients differs between the two pictures.

The three membership functions y1, y2 and y3 are plotted as solid, dash and dash-dot

line.
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behaviour was measured by the activity coefficients. Our task was to identify
those inhibitors with the same functional behaviour. For the computation of
the 7 × 7-similarity matrix W , the pairwise correlation coefficients of the seven
activity “vectors” have been shifted and normalised to the interval [0, 1]. Then
the stochastic matrix T has been constructed and PCCA+ has been applied. The
result was a 3-clustering of the protease inhibitors indicating different behaviour
according to the HIV protease mutants. For a verification of the result, we used
the fact that the activity coefficients can be computed in different ways. PCCA+
has been applied to these different activity coefficients and we always got similar
results. In Figure 2 the results of two of the clusterings are shown. The x-axis
shows the seven protease inhibitors. Their grades of membership, i.e. the curves
for y1, y2 and y3, are plotted in different line styles on the y-axis. Each HIV
protease can be assigned to the cluster for which the corresponding grade of
membership is maximal, i.e. for both experiments we get the result

cluster1 = {1, 2, 6, 7}, cluster2 = {3, 4}, cluster3 = {5}.

Now it remains to examine the structural similarities between the different pro-
tease inhibitors which is still ongoing work. If it turned out that the structure
of the inhibitors allows the same clustering, laboratory work could be done in a
more tightly focused way.

4 Analysis of Metastable Ensembles in Monomolecular
Kinetics

The understanding of transition pathways between different conformations of a
molecule is an important issue in structural biology. Although the restriction of
degrees of freedom to a few dihedral angles significantly reduces the complexity
of the problem, this is still very difficult. Often, scientists are interested in single
pathways, for example those over lowest energy barriers [2]. On the other hand,
it is well known that molecular kinetics is not purely deterministic. All kinds
of trajectories could appear, some with higher probability than others. There-
fore, it seems natural to consider population probabilities. Starting with a given
probability density in position space, we are interested in the evolution of the
density to figure out intermediate states.

A description of molecular dynamics based on all conformations is unfeasible
for large molecules. Therefore, we work with a set concept based on metastable
conformations as introduced in [14]. First, we reduce the position space to a
number of N states represented by basis functions [19] or boxes [15]. Then,
we cluster states into metastable conformations by applying PCCA+ to the
transition rate matrix Q. The infinitesimal generator Q of T τ provides important
chemical information concerning transition pathways of single molecules. Given
an initial weighting xA of the states, one can compute the corresponding weights
and the spatial configuration density at each time step t ∈ [0,∞) via

ẋ = Q�x, with T τ = exp(τQ). (2)
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This is the desired dynamic in configuration space, which is not based upon
single molecules but upon ensembles.

It is easy to verify that the eigenvectors, which are essential for PCCA+,
remain the same for the transition rate matrix Q. Assume, Q is diagonalisable
by some nonsingular matrix X , i.e.

Q = XΘX−1 = Xdiag(θ1, . . . , θp)X−1.

Then

T τ = exp(τQ) = X exp(τΘ)X−1 = Xdiag(exp(τθ1), . . . , exp(τθp))X−1,

see [8]. Since exp(0) = 1, an eigenvalue cluster of T τ at 1 corresponds to an
eigenvalue cluster of Q at 0. The number NC of metastable sets is determined
by this number of eigenvalues.

The entry qij , i �= j, can be considered as the reaction rate of the monomolec-
ular reaction

xi ⇀ xj

where xi stands representatively for the weight or “concentration” of state i.
Equation (2) is not very interesting because the kinetics simply converges against
the equilibrium distribution π. If one is interested in a simulation of a transi-
tion from metastable conformation A to a metastable conformation B and the
corresponding transition behaviour, then (2) has to be solved as an initial value
problem with initial distribution xA and an absorbing end state given by the
distribution xB. Chemically, one would permanently eliminate conformation B
out of the ensemble in order to push the reaction into the direction of this prod-
uct. Mathematically this can be done by projection of x onto the orthogonal
complement of the desired end point xB before applying Q. Thus, the absorbing
kinetics equation is:

ẋ(t) = Q� (x − 〈x, xB〉
〈xB , xB〉 xB), x(0) = xA. (3)

The rate matrix Q can be obtained directly from the transition probability
matrix T , but on the other hand, it offers a new approach to identify metastable
conformations if the transition probability matrix is not available or difficult to
compute. Furthermore, we are able to reduce our model not only to a set of basis
functions whose number can be very large, but also to the few metastable sets
which contain all important information about the system.

Example: n-Pentane. We present the application to the n-pentane molecule
CH3(CH2)3CH3 which was modelled with Merck Molecular Force Field [9][10]
at a temperature of 300K. The rate matrix Q was calculated directly from the
transition probability matrix T . T itself resulted from a conformation dynam-
ics simulation with ZIBgridfree, a program package based on meshfree methods
which was developed at Zuse-Institute Berlin, see [19],[12].
We found 9 eigenvalues of Q close to 1,

λ = {1.0000, 0.9988, 0.9985, 0.9978, 0.9976, 0.9967, 0.9947, 0.9601, 0.9589},
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Fig. 3. Matlab [6] plot of a conformation kinetics simulation. Left: From g+/t con-

formation of pentane to the t/g+ conformation. Right: From t/g+ conformation of

pentane to the g+/t conformation. Due to symmetry of pentane, both kinetics simu-

lations should be equivalent. Differences result from unsymmetric approximations of

transition probabilities.

Fig. 4. Volume rendering of two conformations of pentane (left and right) and the

corresponding transition macrostate (middle) in amira/amiraMol [17],[13]

followed by a gap to the 10th eigenvalue λ10 = 0.8170. This corresponds to 9
metastable conformations which can be distinguished according to the orienta-
tion of one of the two dihedral angles (±g and t denote the ± gauche and trans
orientations):

conformations = {−g/t, t/+g,−g/−g, t/t, t/−g, +g/t, +g/+g,−g/+g, +g/−g}

The results for a (g +/t) ⇀ (t/g+) transition of pentane and the reverse
experiment are shown in Figure 3. Only the concentrations of the conformations
(g +/t), (t/g+) and (t/t) are plotted. The corresponding Matlab algorithm needs
less than 1 second CPU time for the computation of a 20ps reaction kinetics
simulation with a 60 × 60-rate matrix Q, i.e. the numerical simulation of the
“reduced model” is much faster than a full dynamics simulation of the same
length. Figure 3 can be interpreted as follows. The conformational change from
(g +/t)-pentane to (t/g+) crosses the (t/t) conformation which can be seen as
transition state. The transition from (t/g+)-pentane into (g +/t)-pentane is
visualised in Figure 4. The left picture shows the start conformation (t/g+),
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the right one the end conformation (g +/t). At each step of the 20ps kinetics
simulation, a similar density plot can be computed. The picture in the middle
shows the transition state at 3.5ps simulation length. It can be considered as the
mean conformation at this particular time.

Even though pentane is a very simple example, it illustrates very well the
concept behind our method. From the chemical point of view, one could imag-
ine that we start with a mixture of different molecules of the same chemical
substance from which we know how the single molecules are distributed to the
clusters. In this example, they all belong to the conformation (g + /t). As time
goes on, this distribution is driven towards equilibrium. Now, for example, sup-
pose that molecules in a certain conformation are especially appropriate for a
certain docking process, i.e. they do not contribute to the kinetics after this
docking has taken place. This conformation is the target conformation of the
reaction equation, here (t/g +). The reaction kinetics calculation delivers infor-
mation about the time scale of this process. Furthermore, it shows which other
conformations are favoured in the meantime which can be of interest if several
docking processes take place.

5 Conclusion

In the present paper, we have shown that Robust Perron Cluster Analysis
(PCCA+) is a powerful tool for many cluster problems arising in computational
life science. As input, PCCA+ expects a stochastic matrix T which can con-
tain dynamics/kinetics information or similarity values from geometrical cluster
problems. The aim of PCCA+ is to recover the almost block diagonal structure
of T . The corresponding clustering is given in terms of a membership function
for each of these “blocks”. The number of almost-blocks in the matrix T need
not to be known a priori. It is provided by the number of eigenvalues close to 1
or by the minChi-value. The property of the membership functions to be linear
combinations of eigenfunctions allows their direct use in conformation kinet-
ics. We prefer PCCA+ because it is easy to implement and has shown to be
competitive with other clustering methods like Supervised Principal Component
Analysis [20].
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15. Ch. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard. A direct approach to
conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys., Special
Issue on Computational Biophysics, 151:146–168, 1999.

16. J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

17. D. Stalling, M. Westerhoff, and H.-C. Hege. Amira - a highly interactive system for
visual data analysis. In Christopher R. Johnson and Charles D. Hansen, editors,
Visualization Handbook. Academic Press, November 2004.

18. D. Verma and M. Meila. A Comparison of Spectral Clustering Algorithms. Tech-
nical Report 03-05-01, University of Washington, 2003.



66 M. Weber and S. Kube

19. M. Weber. Meshless Methods in Conformation Dynamics. PhD thesis, Free Uni-
versity Berlin, 2005. In preparation.

20. M. Weber, W. Rungsarityotin, and A. Schliep. Perron cluster analysis and its
connection to graph partitioning for noisy data. Technical Report ZR-04-39, Zuse
Institute Berlin, 2004.

21. M. T. Wolfinger, W. A. Svrcek-Seiler, Ch. Flamm, I. L. Hofacker, and P. F. Stadler.
Efficient computation of RNA folding dynamics. J. Phys. A: Math. Gen., 37:4731–
4741, 2004.



Multiple Alignment of Protein Structures

in Three Dimensions

Evgeny Krissinel and Kim Henrick

European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
keb@ebi.ac.uk

http://www.ebi.ac.uk/msd-srv/ssm

Abstract. The paper describes the algorithm of multiple alignment of
protein structures in 3D used in the EBI-MSD web service SSM (Sec-
ondary Structure Matching) located at URL given in the title. Structure
alignment is known as a computationally hard procedure, with multiple
alignment being considerably harder then a more conventional pairwise
alignment. We base our approach on an efficient SSM algorithm for pair-
wise structure alignment, which allowed for multiple alignment of a con-
siderably larger number of structures (up to 100), on comparison with
alternative techniques, in real time.

1 Introduction

Comparison studies play an important role in structural biology. It is widely
acknowledged that structural similarity is a clue for the identification of pro-
tein function and evolution. Often structural similarity is estimated by sequence
identity, obtained in the course of sequence alignment, assuming that higher
sequence similarity is a necessary condition for structures to be geometrically
similar. Vast data on protein structures, accumulated in PDB over last decades,
allow nowadays for a detail structure analysis. It was found (cf. Refs. [1,2,3,4])
that structural similarity is not a simple function of sequence identity. As ap-
pears, only 20% of identical residues in two chains is often sufficient for structures
to be very similar.

This result implies that structure-related studies should use geometry-based
tools whenever possible. A number of methods for the comparison of protein
structures have been developed over last decade. Most of the effort was invested
into algorithms for pairwise structure alignment [1, 5–18] but only a few tech-
niques for the alignment of multiple structures in 3D have been reported [19–21].

In this paper, we describe the algorithm of multiple structure alignment
employed in the EBI-MSD web-server SSM (found at URL given in the title).
The server delivers both pairwise and multiple alignments of protein structures
in 3D. The SSM’s pairwise alignment algorithm was detailed in Ref. [1].

2 General Notes

Multiple structure alignment (MA) may be defined as identification of residues
that occupy geometrically equivalent positions in all (more than 2) aligned struc-
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tures. Geometrically equivalent residues are found in close proximity of each
other, when structures are properly rotated and translated (superposed). Ev-
idently, there are many different rotations and translations that put some of
residues into superposition, so there are many different alignments. From that
manifold, we focus on alignments which maximise a certain score function, which
normally depends on the number of superposed residues and a measure of dis-
tance between the superposed structures.

Although the above definition is identical to that of pairwise alignment (PA),
it is important to realize that, in general, multiple alignment does not reduce
to the set of all-to-all pairwise alignments of given structures. Identification
of geometrical equivalence is always a subject to certain criteria, and unless
structural similarity is high, a small distortion of one structure may noticeably
change the pairwise alignment. As a result, if ith residue of structure A, ri

A,
may be aligned to residue rj

B of structure B, and the latter – to residue rk
C of

structure C, it does not necessarily mean that residues ri
A and rk

C may be also
aligned. Only in the simplest case of highly similar structures, when geometrical
equivalence of residues is established well within the used geometrical criteria,
multiple alignment is given by the intersection of all-to-all pairwise alignments.

It follows from the above that multiple alignment almost always results in
lower pairwise scores, so that structures appear more distant then would be
concluded from the pairwise comparisons. On the other hand, MA is biased
to spotting out structural features that are common for all aligned structures,
therefore one may expect that multiple alignments are less affected by artefacts
of employed geometrical criteria.

The problem of multiple structure alignment, just as that of PA, does not
have an exact solution, and any solution is subject to accepted definitions of
structural similarities and scores. There are no common agreements on the latter.
All known methods (cf. Refs. [19,20,21]) use different techniques that try to
improve a starting alignment chosen from initial pairwise all-to-all alignments,
typically by chosing a pair of most similar structures and consecutive addition of
closest structural neighbours to the alignment. In Ref. [21], MA is sought from
initial PAs by Monte-Carlo moves representing indels. Neither of techniques
guarantees convergence to optimal solution. We suggest an approach, which is
based on iterative removal of structural elements that have least chances to
get aligned, according to a heuristic score. After all non-aligneable structural
elements are identified, the solution is refined by iterative multiple alignment of
backbone Cα atoms.

3 Algorithm

3.1 Multiple Alignment of Structural Elements

In the following discussion, we define structural element as one or more secondary
structure elements (SSE), found in a certain geometrical orientation to each
other and ordered in the same way along aminoacid chain. We also assume that
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structural elements (Hk
A,B,C stand for he-

lices and Sk
A,B,C - for strands of chains

A, B and C, respectively; arrows denote

pairwise alignments of SSEs). Chains A

and B may be unambiguously aligned,

while there is an ambiguity of their align-

ment to chain C: any of strands Sk
A,B may

be aligned to S1
C . Given that geometri-

cally best pairwise alignments map S2
A and

S1
B onto S1

C , as shown in the Figure, the

strands cannot be multiply aligned by a

simple intersection of their pairwise align-

ments.

multiple alignment preserves the connectivity of structural elements, i.e. for any
aligned pairs (Si

A, Sj
B) and (Sm

A , Sn
B) (where superscripts denote the element’s

serial numbers and subscripts - chains) sign(m − i) = sign(n − j).
The problem of multiple alignment of structural elements is illustrated in

Fig. 1. In this illustration, multiple alignment of helices may be unambiguously
obtained as an intersection of their pairwise alignments, while strands do not
seem to align because strands S2

A and S1
B in structures A and B, aligned to the

only strand S1
C in structure C, do not align to each other.

The above consideration, however, does not mean that one should not try to
align strands in this example. Indeed, if pairs (S2

A, S2
B) and (S2

A, S1
C) were found

as geometrically equivalent, one can assume that pair (S2
B, S1

C) could be also
aligned, however with a lower pairwise score than that of pair (S1

B, S1
C). Similar

reasonings lead to the conclusion that pair (S1
A, S1

C) could be aligned as well. It
is not a rare situation in protein structure comparison that a particular structure
element of one structure may be equivalenced with more than one element of
another structure; should that be the case, solution with maximal pairwise score
is chosen [1].

Therefore, it may be suggested, that, having the results of pairwise all-to-
all alignments as a starting point, one possibly needs to remap those structural
elements that may be connected by PA relations (dotted arrows in Fig. 1), but
do not multiply align as an intersection of PAs. For the schematic in Fig. 1,
one would need to choose from 4 remappings: (Si

A, Sj
B, S1

C), i, j = 1, 2, the one
which maximises a defined MA score. Being apparently correct in general, this
simple recipe has two main drawbacks. Firstly, remapping of structural elements
changes the optimal orientation of structures and, as a result, pairwise scores for
all structural elements also change. For example, remapping of strands in Fig. 1
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might make some helices non-matching. This means that structural elements
should be remapped gradually, one-by-one, with recalculation of all pairwise
alignments after each remapping. Secondly, the number of possible remappings
depends exponentially on the number of aligned structures. Extension of example
in Fig. 1 onto 11 chains gives 210 possible remappings if each chain, except one,
has only two candidate strands for alignment. In practice, this makes multiple
alignment of more than 10-15 structures computationally prohibitive. In this
situation, our suggestion is to gradually exclude structural elements, which have
least chances to get aligned, from consideration. The chances are estimated by
a heuristic score, as described below.

Algorithm of multiple SSE alignment

1. Initialise an empty list L of excluded SSEs.
2. Calculate N(N − 1)/2 pairwise alignments between all N given structures.
3. For each SSE /∈ L, calculate the total number of SSEs in other structures

it is aligned to, P i
x (i stands for the SSE serial number in structure x). If

P i
x = N − 1 for all i and x, then all SSEs not found in list L have been

multiply aligned and algorithm quits. Otherwise, proceed to step 4.
4. For each SSE /∈ L with P i

x < N − 1, calculate the alignment score Qi
x. We

define this score as a sum of Q-scores in all pairwise alignments for the given
SSE (cf. Eqs. (8,10) in Ref. [1]):

Qi
x =
∑

y

∑
j

(
N ij

xy

)2(
1 +
(
RMSDij

xy/R0

)2
)

N i
xN j

y

(1)

where y enumerates structures, j enumerates SSEs in a structure, N ij
xy is

the number of aligned residues in ith SSE of structure x and jth SSE of
structure y, RMSDij

xy - r.m.s.d. of aligned residues, N i
x and N j

y are the total
numbers of residues in the SSEs. R0 is an empirical parameter measuring
the importance of r.m.s.d. versus the alignment length, chosen at 3 Å [1].

5. Identify the least Qi
x and place ith SSE of structure x into list L. If all SSEs

of structure x are found in list L, then multiple alignment does not exist and
algorithm quits. Otherwise, proceed to step 6.

6. Recalculate N − 1 pairwise alignments between structure x and other struc-
tures, with SSEs found in list L excluded from consideration, and return to
step 3.

As seen from the above, the described algorithm may be implemented using
any method for pairwise alignment. Using the similarity Q-score is an empirical
element of the algorithm. The score was chosen on the ground of observation,
described in Ref. [1], that it represents a considerably better measure for struc-
tural similarity than the more conventional r.m.s.d. and alignment length. For
the pairwise alignments, we employ the SSM algorithm [1], being encouraged
by its efficiency and quality quoted recently in an independent study [22]. Be-
cause SSM algorithm is based on matching SSEs, it allows for efficient removal
of non-matching SSEs from consideration in step 6 above.
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3.2 Multiple Cα Alignment

Multiple alignment of structural elements yields a list of geometrically equivalent
SSEs in the given structures. These data can be used for identifying common
substructures in general and may be sufficient in some studies. A detail analysis
of structural similarity requires structure alignment on the level of individual
residues, including those not contained in SSEs. Below we describe an algorithm
for multiple alignment of residues represented by their Cα atoms.

The algorithm follows the ideas of SSM algorithm for pairwise Cα alignment
(SSM-PA), described in Ref. [1]. Using SSE alignment as an initial guess for the
superposition of structures, SSM algorithm looks for pairs of Cα atoms which
may be mapped onto each other such as to maximise a score function. Obtained
alignment is then used for the calculation of improved superposition and the
whole process is iterated until alignment does not change.

The SSM-PA algorithm may be adapted to multiple alignment after corre-
sponding changes in its part that maps Cα atoms and redefinition of the score
function. Below we discuss these changes and summarise the algorithm. In what
follows, ai stands for ith Cα atom of chain A and |ai, bj| is distance between
two atoms. We will also refer to groups of atoms, all from different chains, as
Gi,j,k... = {ai, bj , ck . . .}. A group is considered as mapped, if all atoms in the
group are found to be in geometrically equivalent positions.

SSM-PA defines a pair of atoms (ai, bj) as mappable if they belong to compat-
ible SSEs (see details in Ref. [1]) and |ai, bj | ≤ |ai, bm| and |ai, bj | ≤ |an, bj| for
any unmapped atoms an and bm. This definition allows to identify the pair un-
ambiguously and efficiently. Having sorted all pairs by increasing distance prior
the mapping, SSM-PA builds optimal Cα alignment by mapping pairs one-by-
one starting from top of the list. Each new pair is checked for the connectivity
conflict with all previously mapped pairs, that is, for any two mapped pairs
(ai, bj) and (an, bm) the equality sign(n − i) = sign(m − j) should hold.

In order to find mappable atoms in more than two chains, one has to define
a distance measure for groups of atoms, |G|. A few distance measures may be
proposed, for example,

|G| =
√

1
2N(N − 1)

∑
x,y∈G

|x, y|2 (2)

|G| = max
x,y∈G

|x, y| (3)

|G| = max
x∈G

|x, ḡ| (4)

where ḡ is a central-mass atom in the group. One may see that a straightforward
use of these or similar distance measures for mapping groups of atoms results in
the evaluation of a large number of groups, even after introducing a reasonable
distance cut-off. It may be shown that computation complexity of such algo-
rithm is proportional to N !, which makes it unfeasible for N > 5− 8 structures.
Therefore, we suggest a simplified procedure for the identification of mappable
groups of atoms.
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Fig. 2. Schematic of multiple Cα align-

ment. A fragment of superposed chains is

shown in the Figure. Mapped groups of

atoms are connected by dotted lines, chain

X represents the consensus structure. Sup-

pose that structure B is the closest one to

X in pairwise score, then mapped groups

{a2, b3, c1}, {a5, b6, c4} and {a8, b9, c7} are

identified as atoms b3, b6, b9 and atoms

from chains A and C closest to them. See

text for details.

Introduce consensus structure X made of atoms placed in mass centers of
the mapped groups (cf. Fig. 2). Next, find structure A∗ that is closest to X in
pairwise score (initially this structure may be defined as one with minimal sum
of pairwise scores to other structures). Now one can identify mappable groups as
those made from atoms a∗

i and atoms mappable to them in all other structures,
chosen as in pairwise SSM alignment procedure [1], outlined above.

The proposed approach may be viewed as a simplified version of the central
star method used in multiple sequence alignment (cf. Ref. [23]). While sequence
alignment may be done in one pass, structure alignment involves recalculation
of structure superposition after each alignment, which recalculation may change
the choice of structure A∗. We found in a number of trial studies that this
approach is a good approximation to the full-metric solution. Both approaches
give identical answers for the alignment of structures with pronounced similarity,
and a moderate number of differences (few percent of aligned residues) in case
of dissimilar structures.

As noted in Ref. [1], not all mappings improve the alignment score. After all
possible mappings are done, the algorithm should try to improve the alignment
score by unmapping the groups with large distance measure |G|. We define the
alignment score as

Q = N2
align/

{[
1 + (DG/R0)

2
]
NminNmax

}
(5)

where Nalign is number of aligned groups, Nmin and Nmax are minimal and
maximal number of residues in the aligned chains, R0 is the same empirical
parameter as in Eq. (1). DG is calculated as r.m.s.d. of all mapped groups:

DG =
√∑

a∗
i

|G...i...|2/Nalign (6)
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where any of Eqs. (2-4) may be used for the calculation of |G...i...|. We use Eq. (2)
because then Eq. (5) reduces to the pairwise Q-score [1] at number of structures
N = 2.

Algorithm of multiple Cα alignment

1. Using the results of multiple SSE alignment, make initial superposition of
structures and find structure A∗ with least sum of pairwise Q-scores to other
structures.

2. Calculate core Cα-alignment as an intersection of all pairwise alignment
obtained in the last iteration of multiple SSE alignment.

3. Identify all mappable groups of atoms respecting to umapped atoms a∗
i as

described above, and sort them by increasing the distance score |G...i...|.
Starting from top of the list, map groups that do not have the connectivity
conflict with all previously mapped groups.

4. Unmap groups in the reverse order until maximum value of Q-score, as de-
fined by Eqs. (5,6), is reached.

5. Mapped groups of atoms represent a multiple alignment. If it does not differ
from the one previously obtained then quit. Otherwise proceed to step 6.

6. Calculate consensus structure as mass centers of the mapped groups (see
Fig. 2). Using algorithm for fast optimal superposition, described in Ref. [1],
superpose all structures with the consensus structure.

7. Identify structure A∗ which superposes with best pairwise score on the con-
sensus structure, and proceed to step 2.

3.3 Implementation, Output Data and Scores

The described algorithm of multiple alignment of protein structures in three
dimensions has been implemented as an additional function of the EBI-MSD
web-server SSM, which also may be used as a standalone (off-line) application
in in-house setups. The development is based on the new CCP4 Coordinate
Library [24]. The output data include:

Alignment length: number of aligned groups of Cα atoms
Consensus r.m.s.d. and Q-score: r.m.s.d. and Q-scores of each structure

alignment to consensus structure
Overall r.m.s.d. and Q-score: calculated as Eqs. (6) and (5), respectively
Superposition matrices: rotation-translation matrices of best structure su-

perposition on consensus structure
Pairwise scores: N × N matrices of pairwise r.m.s.d., Q-score and sequence

identity
SSE and Cα alignments: tables of aligned SSEs and residues.

All output data may be downloaded in XML or plain text format (and FASTA
format for aligned sequences), superposed structures may be visualised using the
Rasmol [25] software.
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Fig. 3. CPU time as a function

of the number of aligned struc-

tures obtained from the log of

SSM server at EBI-MSD. All cal-

culations were done on a single

1.2Ghz PC. Upper dotted line

represents the maximum CPU

time required, lower dotted line

- minimum CPU time, and solid

line gives the average. 95% of

the data correspond to multiple

alignment of up to 30 structures.

4 Results and Discussion

Fig. 3 represents data on the computational performance of the described al-
gorithm, obtained from the log of SSM server at EBI-MSD for 2004-2005 year
period. As may be seen from the Figure, calculation time is not a simple function
of the number of aligned structures N . However, in the region of 3 ≤ N ≤ 30,
where most of the data have been collected, the average computation time has
polynomial trend on N . In each particular case, calculation time also depends on
the structure size (number of SSEs) and structural similarity: calculations are,
on average, longer for larger and less similar structures. As may be seen from
Fig. 3, these factors make a difference of more than 4 orders of magnitude.

The computational complexity of MA algorithm may be estimated as
O(N2nm) times complexity of pairwise alignment, where nm stands for the num-
ber of SSEs in the longest chain. Complexity of SSM-PA depends on structure
topology and similarity and ranges from O(nm) to O(mn+1n), where n, m are
the numbers of SSEs in the aligned structures.

Figs. 4A,B present the typical results of multiple alignment. As seen from
Fig. 4A, our MA algorithm is capable of discovering common substructures in
different-fold structures, as defined by SCOP classification [28]. The β-sheet,
common to all structures, was aligned with overall r.m.s.d. of 2.7Å and Q-score
of 0.14, which implies a noticeable similarity. This similarity is present despite
a rather low sequence identity of the aligned parts, which ranges from 0 for pair
1sar:A-1jqq:C to 0.14 for pair 1sar:A-1jy4:B.

Multiple alignment of same-family structures usually shows high structural
similarity, as one would expect to obtain from SCOP classification. Fig. 4B
demonstrates very clearly that structural differences occur only on protein sur-
face, while internal parts match closely, forming a core of chain fold. The aligned
parts were matched with overall r.m.s.d. of 1.55Å and Q-score of 0.53, which in-
dicates a strong structural similarity. Sequence identity of the aligned structures
in this example varies from 0.31 (4dfr:A-1dhf:A) to 1.0 (1ra8-5dfr).
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A B

Fig. 4. Results of multiple alignment of A) different-fold structures 1sar:A, 1lqm:B,

1jqq:C and 1jy4:B (SCOP families d.1.1.2, d.17.5.1, b.34.2.1 and k.35.1.1, re-

spectively), and B) same-family structures 4dfr:A, 1ra8, 5dfr, 1dhf:A, 1mvs:A, 1ia1:B

and 1ia3:A (all belong to SCOP family c.71.1.1). Aligned parts are shown in dark

grey. The pictures were obtained using Molscript [26] and Raster 3D [27] software.

Since there is no commonly accepted mathematical definition for multiple
structure alignment, quality assessment of the results is difficult. A detail dis-
cussion of this question is outside the scope of present study. Table 1 shows a
typical example of comparison of multiple alignments obtained from Combina-
torial Extension [21], MASS [20] and SSM servers.

Visual inspection of the alignments reveals that the servers, in general, agree
with each other. As seen from Table 1, SSM’s alignments are somewhat longer
than those from MASS at higher r.m.s.d. (alignment length in CE seems to be
reported wrongly, see remarks in the Table caption). This fact means that, com-
paring to SSM, MASS is more willing to sacrify the alignment length in favour
of lower r.m.s.d. The balance between Nalign and RMSD depends on empirical
parameters (such as distance cut-off) used in particular algorithms, and, gener-
ally, is not an indicator of a method’s quality or robustness. We discussed this
question in details in Ref. [1].

Comparison of the servers performance may be done only with the following
important remarks. Firstly, the run time depends drastically on the selection
of aligned structures, which is demonstrated in Fig. 3 by a considerable differ-
ence between the maximal and minimal CPU time required for the alignment.
Therefore, fair comparison may be done only using the averaged run times from
the servers’ logs, which are not available on-line. Secondly, in difference of SSM,
CE-MA and MASS are not interactive servers. Instead, they deliver results by
e-mail. We measured the response time of CE-MA as a difference between the
“send” time tags of the e-mails confirming the submission and delivering the
results. MASS does not confirm submission by e-mail, and we measured its re-
sponse time as a difference between the actual time of delivery and delivery time
for a MA of 3 identical structures, which is supposed to be very fast. All mea-
surements were done in off-peak time period, without parallel submissions. The
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Table 1. Alignment lengths and r.m.s.d. of multiple alignments obtained from CE-

MA [21], MASS [20] and SSM servers (present study). The initial set of 24 structures

contained PDB entries 4dfr:A, 1dyh:A, 1dyi:A, 1rb3:A, 2drc:B, 1ra3, 1re7:A, 1ra9,

1rx2, 5dfr, 1dg8:A, 1dg5:A, 1dhf:A, 1u70:A, 1dr2, 1hfq, 1u72:A, 1pd9:A, 1dyr, 1j3j:B,

1ia4:B, 1vj3:A, 1m78:A and 1t6t:2. The entries were picked from the results of pair-

wise alignment of 4dfr:A to all entries of PDB such that Q covers a range of 0.2 to 1.

Then the subsets of 8, 12, 16, 18 and 20 structures were obtained by leaving every 3rd,

and removing every 2nd, 3rd, 4th and 6th structure from the set, respectively.

CE MASS SSM
N

Nalign RMSD Nalign RMSD Nalign RMSD‡

8 205∗ 1.2 130 1.1 146 1.5
12 183∗ 1.4 121 1.1 143 1.6
16 188∗ 1.5 118 1.1 140 1.5
18 187∗ 1.4 119 1.1 140 1.5
20 187∗ 1.4 118 1.1 140 1.5

24 187∗† 1.4 39 1.1 77 1.5

∗Alignment length, reported by CE, is apparently wrong because it exceeds chain
lengths of individual structures (160 for 4dfr:A). † In 24-structure set, CE-MA omitted
PDB entry 1t6t:2. ‡ Consensus r.m.s.d. is shown.
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Fig. 5. Response time of CE-

MA [21] (filled circles), MASS

[20] (open circles) and SSM (di-

monds) for producing alignments

in Table 1. Dashed line shows

CPU time of SSM. See text for

details.

last factor, that affects the comparison, is the server’s hardware. SSM-MA runs
on a single 1.2Ghz Linux PC, and it is not likely that it may get a substantial
advantage, if any, on the hardware basis.

Figure 5 shows comparison of response time, measured as described above,
obtained from CE-MA, MASS and SSM for producing multiple alignments in
Table 1. As seen from the Figure, SSM outperforms CE-MA by almost an or-
der of magnitude for all data sets in Table 1. MASS seems to be 4 to 6 times
slower than SSM except for the data set of 8 structures, when MASS is as fast
as SSM.
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5 Conclusion

We have described here the algorithm of multiple alignment of protein structures
employed in the EBI-MSD web service SSM. The service has been launched in
June 2002 and since then served tens of thousands requests yearly. Vast experi-
ence of using SSM proved its high efficiency and quality of the results [22]. Our
MA algorithm is different from a few others avaliable in that it seeks a solu-
tion by gradual removal of structural elements that are less likely to get aligned,
rather than by a progressive clustering of the most similar chains. We have shown
in this paper that SSM-MA is capable to handle large sets of structures and in
most instances the results are delivered in a few minutes time. We have also de-
scribed the basic scores used in SSM-MA output. These scores are derived from
those of pairwise structure alignment by generalisation on the many-structure
case. Like in the case of PA (cf. Ref. [1]), our experience suggests that Q-score
is a better measure of structural similarity than the traditionally used r.m.s.d.
and alignment length. As found, SSM-MA is capable of picking similarities in
remote structures from different SCOP folds and classes, which suggests usabil-
ity of the method for structure classification and studying the structure-function
relationships.
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Abstract. Most software tools in homology recognition on proteins an-
swer only a few specific questions, often leaving not much room for
the interpretation of the results. We develop a software Passta that
helps to decide whether a protein sequence is related to a protein with
known structure. Our approach may indicate rearrangements and
duplications, and it displays information from different sources in an
integrated fashion.

Our approach is to first break each sequence of the Protein Data
Bank (PDB) into Secondary Structure Elements (SSEs). Given a query
sequence, our goal is then to ‘explain’ it by SSE sequences as good as
possible. Therefore, we use the Waterman-Eggert algorithm to compute
pairwise alignments of SSE sequences with the query. In a graph-based
approach, we then select those alignments that reproduce the query in
an optimal way. We discuss two examples to illustrate the potential (and
possible pitfalls) of the method.

1 Introduction

The need to characterize and annotate the enormous amount of gene sequences
emerging from the genome sequencing projects led to the development of many
useful algorithms and tools. A common approach used is homology recognition,
where a query sequence is compared to one or many already characterized se-
quences or structures. If a certain similarity between those can be found, we can
assume the existence of a common ancestor, and hence, homology. Shi et al. [1]
defined four major groups of homology recognition:

1. Methods that do pairwise sequence comparison, usually by computing pair-
wise alignments. They are able to detect closely related homologs, but often
miss remote homologies.

2. Tools in the second group are also based on sequence comparison. However,
they use multiple alignments of related sequences and compute profiles or
probabilistic models from them to improve the detection of remote homologs.

3. The third group of methods uses structure- and sequence information.
4. Homology detection in the fourth group relies on structure information only.

Methods in this group are usually threading methods.

BLAST [2], FASTA [3], and the Smith-Waterman algorithm [4] are well
known examples from the first group of methods. They compute pairwise align-
ments, but are usually used to search a whole sequence database.

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 79–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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PSI-Blast [5] can be seen as an enhanced BLAST. It is better suited to
detect remote homologies, and since it computes and uses profiles of simililar
sequences, it can be assigned to the second group. The same holds for HMM-
based approaches, see [6] and references in [1].

The Jumping Alignment algorithm ‘Jali’ [7] also belongs to the second group
of methods, but the concept already suggests a connection to protein structure.
The query is aligned simultaneously to all sequences in a multiple alignment (usu-
ally derived from a protein family). However, only one sequence in the alignment,
the ‘reference sequence’, contributes to the actual computation of the Jali score.
The algorithm may change (or ‘jump’ between) the sequences, if the properties
of the multiple alignment allow to do so. Structure may play a role, if the aligned
family has modular properties, e.g., divides into two subfamilies. However, tests
in [8] whether the jumps of the algorithm reflected the secondary structure of
some protein families revealed only few examples where this was the case.

All approaches mentioned so far are strictly sequence-based alignment ap-
proaches. Since they process their information sequentially, they are not well
suited for the detection of rearrangements and duplications. When used in a
database search context, the results are usually presented as alignments of the
query to the corresponding database hits. If the hit is only partial, it is not at
once clear whether the unmatched part of the query bears similarities to other
proteins in the database.

This was our motivation to develop a new software, called Passta (Protein
annotation by secondary structure based alignments). Passta is a fragment-based
alignment approach on secondary structure elements (SSEs) or, more precisely,
SSE sequences. SSEs can be seen as the smallest structural entities in a protein,
and we decided to use them, even though their structure is not fixed in vivo,
but depends on the environment and other factors (see, e.g. [9]). Given a query
sequence, the aim of Passta is to show how well it can be represented with SSEs
found in sequences of the PDB. Further information is provided by linking the
SSEs to the SCOP classification database [10,11], and by showing the position
of the matched SSEs in their chain, which helps to find possible rearrangements
and duplications. Each site in the query can only be aligned with one SSE at a
time, but we display all such alignments simultaneously.

Two methods in the third of the groups listed above also use SSEs, MAP [12]
and SEA [13]. Both use predicted SSEs. MAP derives a secondary structure
‘map’ from the SSEs to find the most likely fold from a database of domains with
known structure. SEA (‘SEgment Alignment’) uses a graph-based approach to
compare two protein sequences. For both proteins, SSEs are predicted with sev-
eral secondary structure prediction methods and represented in two unweighted
graphs. Ye et al. [13] then solve a network matching problem: They search for
a path in each graph/network, such that the corresponding SSEs in both paths
are maximally similar.

The main difference between their and our concept is that we represent
residue-level alignments from many different proteins simultaneously in one
graph and search for those that best explain the query, while Ye et al. use one
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graph for each target. Therefore, the SEA approach can not detect similarities
to different database hits at the same time.

Other methods in homology recognition using SSEs are mostly in group
four. They use the three-dimensional coordinates of the SSEs, mostly for vector
representations in protein structure comparison. These methods are basically
out of scope here, however, we would like to mention a recent study by Shih
and Hwang [14] who investigated alternative/permuted alignments by structural
comparison, where the SSEs were not required to be sequential. Their results
indicate that this area is to some degree overlooked, and investigations here will
be useful to improve our understanding of the organization and evolution of
proteins.

We present the basic framework of Passta in Section 2 and illustrate its
performance in Section 3. The first example we give is a plastocyanin sequence
from Oryza sativa (rice), which serves as a proof of concept. The second one is
the CASP6 target ‘T0269’ (see http://predictioncenter.llnl.gov/casp6/
Casp6.html).

2 Material and Methods

Terminology: Based on the atomic coordinates of a structure determination ex-
periment, each amino acid in a protein structure is assigned a secondary structure
state (see e.g., [9], chapter 17). The standard here is the DSSP algorithm [15],
which was also used to assign the secondary structure states to the databases
in Section 2.1. These states can be grouped into classes. The DSSP states G,
H, and I are helical states, B and E are strand states, and the remaining three
(T, S, and blank) are random coil or loop states. A ‘SSE’ is a protein segment
where all amino acid states are equal or at least belong to the same class.

2.1 Database Integration

Passta uses a relational database (Passta DB) that integrates information from
three secondary source databases which themselves are all derived from the Pro-
tein Data Bank (PDB) [16].

The Protein Topology Graph Library (PTGL) [17] is based on the
atomic coordinates of PDB proteins satisfying certain quality criteria. These
proteins were decomposed into SSEs of known local structure, and their topology
was stored. The aim of the PTGL is to provide this topology information to the
user, but we currently use only the decomposed SSEs.

The PDBFinder II database (submitted) is an enhanced version of the
PDBfinder database [18]. It provides extensive information for almost all proteins
in the PDB. Most of this information could also be found in other databases as
well, but here it is all in one place. We parse loops and coils from the PDBFinder
II database.

The SCOP database [10,11] is a classification on protein domains. It de-
fines four hierarchical levels: family, superfamily, common fold, and class. Two
domains in the same family are closely related, indicated by a high percentage
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of sequence identity and structural similarity. Domains in the same superfamily
are rather distantly related, but should have a common ancestor. Mostly, this
means low sequence identity, but high structural similarity. Two domains have a
common fold if their secondary structure elements have the same arrangement,
i.e. topology. However, they are not necessarily related. The different folds are
grouped into classes according to their main class of secondary structure. The
ASTRAL database [19,20] can be seen as bridging the gap between SCOP and
the PDB. Here, we use the ‘SPACI’ score that the ASTRAL consortium as-
signs to each protein domain in SCOP. It summarizes the quality of the struc-
ture determination experiment. We use it to determine a representative among
sequence-identical SSEs and Chains.

Integration. After the integration of the source databases into the Passta DB,
it contains tables and data for most proteins, chains, and SSEs available. Also,
some precomputed information needed in the annotation approach (‘PasstaRun’,
see Section 2.2) was stored.

The PDB and Chain ID fields are common in all of the source databases,
so we used them to cross-index all information before storing it in the Passta
database.

The SSEs with helical or strand conformation were taken from the PTGL.
The coils were parsed from the PDBFinderII, because the PTGL does not pro-
vide them. To ensure consistency, we required the SSE sequences from the PTGL
to map back to the PDBfinder II chain sequence. If this was not possible, we
excluded the whole chain from the database. If more than twenty percent of a
SSE sequence was made up of ‘X’s (amino acid unknown), we excluded this SSE
as well. Some SSEs are not contigous, they contain a chain break, indicated by
a gap character (‘−’). We decided to split those SSEs into two of the same class.
After the integration, the Passta DB contains 21572 proteins, 44048 chains, and
almost 1.5 million SSEs. That is about 90 % of all possible data.

MaxScores. For each SSE in the database, we stored its maximal alignment (i.e.,
exact match) score under several substitution matrices. We use these values as
rough estimates of alignment quality (see Section 2.2).

Redundancy. Many chain- and SSE sequences are not unique. Since redundant
sequences slow down the search procedure, we mark them in order to exclude
them from the search process. The procedure is basically the same for chain and
SSE sequences: We select all equal sequences and compare the SPACI scores
of their ‘parent’ proteins. The sequence with the best associated SPACI score
is marked as being the representative, i.e. non-redundant. First, we do this on
the level of chains. Then, we apply it to the SSEs from those chains that were
marked non-redundant right before.

SCOP. We also integrated the SCOP classification into the database. For most
SSEs we now know the structural domain it belongs to.
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2.2 PasstaRun - Annotation Strategy

The annotation of the query with PDB SSEs is implemented in two stages. The
first stage (‘Pass One’) is a filtering approach. It selects some candidate chains
for use in the second stage (‘Pass Two’), the annotation process itself. We used
the blosum62 substitution matrix with gap costs of 12 and 2 for initiation and
extension, respectively.

Pass One. Given a query R of length n, Pass One starts by selecting all non-
redundant SSEs of length 6 or more from the database. Each SSE comes with its
associated MaxScore. The Waterman-Eggert algorithm [21] computes pairwise,
local, non-intersecting alignments of two sequences. It starts with the optimal,
i.e. highest scoring alignment, then co- and suboptimal alignments are computed.
We apply the Waterman-Eggert algorithm in Pass One to compute several align-
ments between each SSE sequence and R, until the ratio score/MaxScore drops
below a predefined constant.

Let A be the set of all alignments found in this way. Each alignment α ∈ A
is represented by a 5-tuple (b, e, c, p, s). Elements b and e, 1 ≤ b ≤ e ≤ n, are the
begin and end indices of the aligned SSE w.r.t. the query; c ≥ 1 is a unique chain
identifier; p ≥ 1 is the position of the SSE in its chain; and s is the alignment
score. For a given alignment α = (b, e, c, p, s), we will refer to the individual
components of the 5-tuple as b(α) := b, e(α) := e, c(α) := c, p(α) := p, and
s(α) := s, respectively.

Our goal in Pass One is to find a set of good candidate chains for use in
Pass Two. In fact, we only need to find a set of good alignments, since we know
the chains that an aligned SSE sequence is contained in. We use a graph-based
approach to solve this problem. We define a directed acyclic graph G = (V, E),
where the set of vertices V is made up of representations of all alignments in A,
plus two other vertices; head = (0, 0, 0, 0, 0) and tail = (n+1, n+1, 0, 0, 0), such
that V = A ∪ {head, tail}.

An edge exists between two vertices u, w ∈ V , u �= w, if and only if

1. u and w do not overlap (and u is before w), i.e. e(u) < b(w), and
2. there is no alignment v between u and w, i.e. � ∃ v ∈ V : e(u) < b(v) and

e(v) < b(w).

A path P in G is a sequence of vertices (v1, v2, . . . , vk) such that vi and vi+1

are connected by an edge for all 1 ≤ i < k. Any path from head to tail cor-
responds to a selection of non-overlapping alignments. The weight of a path
P = (v1, v2, . . . , vk) is given by weight(P ) :=

∑k
i=1 s(vi), it indicates the se-

lection quality. to some degree. So, the problem to find good candidate chains
transforms to a single-source shortest path problem from head to tail, which can
be solved easily and efficiently (see e.g. [22]).

We compute all such optimal paths, i.e. where weight(P ) is maximal, and
collect all chain IDs of their vertices for use in Pass Two. However, the SSEs
we use in the alignments are all non-redundant. SSEs with an identical sequence
may also exist in other chains. We identify those and collect their chain IDs
as well.
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Pass Two. The goal of the second pass is to annotate the query with the best
selection of SSEs from those chains that passed Pass One. Since the result should
be biologically feasible, we have placed certain constraints on the algorithm.
Otherwise, Pass One and Pass Two are quite similar. We describe changes in
the definitions and the algorithm where applicable. Pass Two first collects for
each chain c in the list all SSEs, regardless of redundancy status or size (i.e.,
the complete chain). Then we recompute the set of alignments A. However, it
makes no sense to align sequences of length one or two to the query. Therefore,
we divided the alignment phase into an align and an extend part.

Align. Let l(S) be the length of an SSE sequence S. If l(S) = 2, we compute
all exact matches between S and the query R and insert the corresponding
alignment(s) into A. If l(S) ≥ 3, we use the Waterman-Eggert algorithm. We
accept an alignment α between S and R whenever its score/MaxScore ratio is
larger than a predefined constant.

Extend. Each time we insert an alignment α into A in the align phase, we look
at the SSEs adjacent to S in its chain. If they exist and their length is less or
equal to 4, we align them to R, allowing neither insertions nor deletions. If the
score is larger than zero, we include the new alignment into A (for an example,
see Fig. 1).

01 60 70 80 |Q|

align

extend

align

extend

align

extend

.. ..Q EVLL GANGGVL V FE PN DFTV K SGE T

FL 4

-2FL

EVLL DFSVGGDDGSL FL

EVLL GGDDGSL

GGDDGSL AEVLL

EVLL GGDDGSL

GGDDGSL PGFLEVLL

PG

FL

EVLL DFSVGGDDGSL FL

////

Iteration 2

Iteration 3

Iteration 1

Fig. 1. Example to illustrate the alignment phase in Pass Two. The example corre-

sponds to the result shown in Fig. 2. Alignments displayed with reduced size are from

an ‘extend’ phase. Iteration 1, align: A local alignment of the SSE sequence ‘GGDDGSLA’

and the query is computed, yielding (‘GGDDGSL’, ‘GANGGVL’). Iteration 1, extend: The

SSE left of ‘GGDDGSLA’ is already aligned, so no extension is performed here. However,

the right SSE is small enough, and we match it (a) at the end position of the local

alignment and (b) at the position where the global alignment would have ended. Only

the latter is accepted here because its score exceeds zero. Iteration 2, align: ‘PG’ is of

length two, and there is no exact match with the query, so it is not aligned. Iteration 2,

extend: No alignment was accepted in the alignment phase, therefore nothing is to be

extended. Iteration 3, align: The SSE sequence ‘DFSV’ is aligned to the query. Iteration

3, extend: Now it is possible to extend with ‘PG’ to the left of ‘DFSV’.
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The directed acyclic graph G is built as described in Section 2.2. However,
there are some differences: In Pass Two, we expand the edge definition. There
is now also an edge between two vertices u, w ∈ V , if:

1. c(u) = c(w) i.e., both SSEs come from the same chain,
2. e(u) < b(w) (the no-overlap condition from Pass One), and
3. there is no other alignment v between u and w, where the SSE in v comes

from the same chain as the one in u and w: � ∃ v ∈ V : c(u) = c(v) = c(w)
and e(u) < b(v) and e(v) < b(w).

The definition of a path is the same as in Pass One. However, a path P =
(v1, v2, . . . , vk) in Pass Two can contain jumps and rearrangements. If the chains
of two adjacent vertices in P are different, i.e. c(vi) �= c(vi+1), we call this a jump.
If they are equal but their positions are not consecutive, i.e. c(vi) = c(vi+1) and
p(vi+1) − p(vi) �= 1, we call this a rearrangement. Let j(P ) be the number of
jumps in a path P , and r(P ) the number of rearrangements. We penalize jumps
and rearrangements by two parameters, jump cost (jc) and rearrangement cost
(rc). The weight of a path P is now given by

weight(P ) =
k∑

i=1

s(vi) − j(P ) × jc − r(P ) × rc.

This makes the annotation of the query with small chance hits from different
chains highly unlikely, if the jump cost is chosen well. Finally, the alignments in
the optimal path are visualized in a HTML page.

3 Results and Discussion

We present and discuss two examples that we annotated with Passta to illustrate
some application possibilities. The complete and colored versions of the presented
alignments can be found at http://www.cebitec.uni-bielefeld.de/~ban
nert/res/filename, where filename is Pcya36-6.htm or T0269-40-5.htm.

3.1 Plastocyanin from Rice

In the first example, the query was a plastocyanin (PC) sequence with a length
of 154 amino acids, from rice. We used a jumpcost value of 36. An excerpt of the
resulting file is shown in Fig. 2. Passta aligned two PDB chains to the query, the
raw score of the optimal path is 369. The annotation suggests that the first part
of the alignment is similar to 1fsk C, the heavy chain of an Immunoglobulin (IG)
antibody from Mus musculus (mouse). There are two rearrangements (SSEs not
consecutive) in the order of the SSEs from this chain. The second chain ‘1ag6’ is a
PC, from spinach (Spinacia oleracea). The annotation with ‘1ag6’ is doubtlessly
correct, however, given the high sequence similarity of the query to other PCs
in the PDB, it is not surprising.
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Fig. 2. Passta alignment of Plastocyanin from rice (excerpt). The upper table shows

the local alignments of the SSE sequences with the query. The lower table displays the

position of the aligned SSEs in their PDB chain. While the SSEs of ‘1ag6’ are con-

secutively aligned, those of ‘1fsk’ are to some degree rearranged and duplicated. Some

query segments and SSEs are shaded. Dark SSE segments are strand SSEs, light ones

are helix SSEs. The intensity of the shaded segments in the query string corresponds

to the score they contribute. The darker, the better the score of the segment.

What about the IG matched to the first part of the query? It is classified into
another SCOP fold than ‘1ag6’, namely ‘Immunoglobulin-like beta-sandwich’
instead of ‘Cupredoxin’. The query PC in this experiment is 154 amino acids
long. The length of the other PCs in the Passta database is only about 100
residues. A multiple alignment of the query and all non-redundant PCs from the
PDB shows that the first 55 residues of the query are not matched by any other
PC in the DB (see Fig. 3). An alignment of the query against the whole SCOP
family 49504 ‘Plastocyanin/azurin-like’ reveals that the first 20 positions of the
query are unmatched by any other domain in the family, and that the sequence
similarity within the first 50 residues is in general quite low (data not shown).
Therefore, we could not find a close homolog matching this region. The IG is
not even a remote homolog of the query, but according to Russell et al. in [12]
it has a loose structural similarity to PCs.

In SCOP, structural similarities are classified into the same fold. The classi-
fication depends on the topology of the SSEs. Here, it matters whether a beta-
sheet is parallel or antiparallel. The loose similarity observed in our example
rather corresponds to the architecture level as defined in CATH [23]. The ori-
entation of the SSEs is not important at this level. A loose structural similarity
being more informative than a hit with absolutely no relationship to the query,
we consider the annotation with the mouse IG as success.

3.2 CASP Target T0269

T0269 (PDB code ‘1vgs’) is a thioredoxin peroxidase from the archaeon Aeropy-
rum pernix, with two domains and a length of 250 residues. In this experiment,
we used a minimum length of 5 (instead of 6) for the non-redundant SSEs that
were aligned in Pass One. The Passta alignment reached a raw score of 191 and
used three chains, ‘1n8j A’, ‘1prx A’, and ‘1uth A’ (see Fig. 4). There are eight
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PC03 -------------------------------------------------------ETFTV

PC07 -------------------------------------------------------ETYTV

PC08 -------------------------------------------------------ANATV

PC09 -------------------------------------------------------ANATV

PC16 -------------------------------------------------------ANATV

PC04 -------------------------------------------------------QTVAI

PC01 -------------------------------------------------------ASVQI

PC12 --------------------------------------------------------MIDV

PC14 ---------------------------------------------------------IDV

PC17 ---------------------------------------------------------LEV

PC02 ---------------------------------------------------------VEV

PC13 ---------------------------------------------------------VEV

PC05 ---------------------------------------------------------AEV

PC06 ---------------------------------------------------------AEV

PC18 ---------------------------------------------------------AEV

PLAS_ORYSA MAALSSAAVTIPSMAPSAPGRRRMRSSLVVRASLGKAAGAAAVAVAASAMLAGGAMAQEV

PC19 --------------------------------------------------------DATV

PC10 --------------------------------------------------------AQIV

PC15 --------------------------------------------------------AAIV

PC11 ---------------------------------------------------------AKV

:

PC03 KMGADSGLLQFEPANVTVHPGDTVKWVNNKLPPHNILFDDKQVPG-ASKELADKLSHSQ-

PC07 KLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPA-KSADLAKSLSHKQ-

PC08 KMGSDSGALVFEPSTVTIKAGEEVKWVNNKLSPHNIVFAADGV----DADTAAKLSHKG-

PC09 KMGSDSGALVFEPSTVTIKAGEEVKWVNNKLSPHNIVFAADGV----DADTAAKLSHKG-

PC16 KMGSDSGALVFEPSTVTIKAGEEVKWVNNKLSPHNIVFDADGV----PADTAAKLSHKG-

PC04 KMGADNGMLAFEPSTIEIQAGDTVQWVNNKLAPHNVVVEGQ-----------PELSHKD-

PC01 KMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDKVPAG-----ESAPALSNTK-

PC12 LLGADDGSLAFVPSEFSCSPGCKIVFKNNAGFPHNIVFDEDSIP---SGVDASKISMSEE

PC14 LLGADDGSLAFVPSEFSISPGEKIVFKNNAGFPHNIVFDEDSIP---SGVDASKISMSEE

PC17 LLGSGDGSLVFVPSEFSVPSGEKIVFKNNAGFPHNVVFDEDEIP---AGVDAVKISMPEE

PC02 LLGGDDGSLAFLPGDFSVASGEEIVFKNNAGFPHNVVFDEDEIP---SGVDAAKISMSEE

PC13 LLGGDDGSEAFLPGDFSVASGEEIVFKNNAGFPHNVVFDEDEIP---SGVDAAKISMSEE

PC05 LLGSSDGGLAFVPSDLSIASGEKITFKNNAGFPHNDLFDEDEVP---AGVDVTKISMPEE

PC06 LLGSSDGGLAFVPSDLSIASGEKITFKNNAGFPHNDLFDKKEVP---AGVDVTKISMPEE

PC18 KLGSDDGGLVFSPSSFTVAAGEKITFKNNAGFPHNIVFDEDEVP---AGVNAEKISQPE-

PLAS_ORYSA LLGANGGVLVFEPNDFTVKSGETITFKNNAGFPHNVVFDEDAVP---SGVDVSKISQEE-

PC19 KLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIP---SGVNADAISRDD-

PC10 KLGGDDGSLAFVPSKISVAAGEAIEFVNNAGFPHNIVFDEDAVP---AGVDADAISYDD-

PC15 KLGGDDGSLAFVPNNITVGAGESIEFINNAGFPHNIVFDEDAVP---AGVDADAISAED-

PC11 EVGDEVGNFKFYPDSITVSAGEAVEFTLVGETGHNIVFDIPAGAPGTVASELKAASMDEN

:* : * . .* : : ** :. *

Fig. 3. Excerpt of a ClustalW alignment of the query (‘PLAS ORYSA’) with all other

non-redundant plastocyanins in the PDB

rearrangements altogether, six in the alignment sequence of ‘1prx A’ and two in
‘1uth A’.

There is no SCOP classification available for ‘1uth A’, and Fig. 4 shows
that the similarities of this chain to the query are few. Its use is probably due
to a chance hit of SSE number 4. ‘1n8j A’ and ‘1prx A’ are classified into the
same SCOP family (‘Glutathione peroxidase-like’), which contains thioredox-
ins. ‘1n8j A’ is an alkyl hydroperoxide reductase from Salmonella typhimurium,
‘1prx A’ is a human peroxidase. So, both proteins are correctly chosen from the
database.

However, we selected this example because of the interesting sequence of
SSE alignments in ‘1prx A’. There are six rearrangements here, but a closer
look reveals that there are really only three sequences of SSEs. If SSE number
14 was removed between number three and four, the first sequence is (10-16),
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Fig. 4. Passta alignment of T0269 from Aeropyrum pernix. The residues 1-32 are un-

matched. Then, five SSEs of ‘1n8j A’ are consecutively aligned to the query (number

6 to 10). From there on, ‘1prx A’ is used to annotate the query. After the alignment

of SSE number 16, a second sequence SSEs is consecutively aligned, from number 2

to 6. However, the sequence is interrupted by number 14, and after number 4 a third

sequence of consecutive SSE-alignments is started.

the second one (2-6), and the last one (21-25). Of course, since the alignments
in the second sequence are very small, this could be just a coincidence. But it
could also indicate some evolutionary event that took place in the past.

4 Conclusion and Outlook

Passta delivers a snapshot that may provide useful information: It shows how well
a query sequence can be represented by PDB sequences, and at which positions.
Since the classes of the chains that the aligned SSEs originate from are also
displayed, some information on the secondary structure composition is available
as well. Finally, the position information given for every aligned SSE w.r.t. its
chain may indicate duplications, repeats or other evolutionary events.

Of course, some problems remain to be solved: Since Passta is presently based
on pairwise sequence alignments, we can not expect it to find remote homologs in
the ‘twilight zone’. We also have to admit that some of the computed alignments
are not very robust. Small variations of the jumpcost parameter can lead to large
variations in the resulting alignment.

We plan to use a set of secondary structure specific substitution matrices
as soon as possible. If the values for gap initiation and gap extension costs are
wisely chosen, this should further improve the annotation quality of Passta.
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Abstract. A protein-protein interface (PPI) is definedby a pair of regions
of two interacting protein molecules that are linked by non-covalent bonds.
Recognition of conserved 3Dpatterns of physico-chemical interactionsmay
suggest their importance for the function as well as for the stability and
formation of the protein-protein complex. It may assist in discovery of new
drug leads that target these interactions. We present a novel method,
MAPPIS, for multiple structural alignment of PPIs which allows
recognition of a set of common physico-chemical properties and their in-
teractions without the need to assume similarity of sequential patterns or
backbone patterns. We show its application to several biological examples,
such as alignment of interfaces of Gproteinswith their effectors and regula-
tors, as well as previously created clusters of interfaces.

Availability: Theprogramandsupplementaryinformation,includingcol-
ored figures, can be found at: http://bioinfo3d.cs.tau.ac.il/mappis/

1 Introduction

Association and dissociation of protein molecules are crucial for most of the cel-
lular processes. A protein-protein interface (PPI) is defined by a pair of regions
of two interacting protein molecules that are linked by non-covalent bonds. Inter-
face structures contain the 3D information of the interactions created between
pairs of binding sites. Comparison and understanding of the physico-chemical
and geometrical nature of these interactions may assist in recognizing certain in-
terface binding organizations, that are important for the formation and stability
of protein-protein complexes [1, 2]. Their recognition may assist in development
of efficient drugs to prevent protein association or dissociation.

Sequence patterns have been widely used for comparison and annotation of
protein binding sites [3]. However, there are numerous examples of functionally
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similar interfaces that do not exhibit such sequential patterns [4]. A sequence
order independent structural alignment method was used by Keskin et al. [5]
to classify all known PPIs according to their Cα patterns. However, represen-
tation by backbone atoms does not capture the physico-chemical nature of the
interfaces, which is important for the interaction. Additional representations
have been used and several methods have been developed for alignment be-
tween binding sites [6, 4, 7, 8, 9, 10]. However, these align between single binding
sites and do not consider the interactions with the corresponding binding part-
ners. Recently, we have developed a method for alignment between a pair of
PPIs [11, 12].

Consider the classical problem of pattern detection modulo rigid (Euclidean)
motion. Define two equally sized point sets as ε-congruent, if there is an Eu-
clidean transformation and an associated one-to-one mapping, such that the
maximal distance between a pair of matched superimposed points is below ε.
For a pair of point sets A and B, the Largest Common Point Set (LCP) prob-
lem is the task of detecting the maximal size ε-congruent subsets A′ ∈ A and
B′ ∈ B, |A′| = |B′|. The optimal solutions are computationally expensive [13]
therefore in practice approximation algorithms are required [14]. Extension of
the problem to detect a common point set between a set of K structures has
many important applications for the analysis of protein and drug molecules.
However, even in 1D space for the case of exact congruence (ε = 0) the problem
is NP-Hard [15].

Here, we define a new optimization problem of detecting the highest scor-
ing spatial pattern common to a set of PPIs. The scoring function considers
physico-chemical properties and interactions shared by a set of PPIs. Our main
motivation is similar to the multiple sequence alignment thesis, namely, that
a feature common to a number of proteins is (probably) functionally more
significant than a similar feature found only between a pair of proteins. We
present a novel method, MAPPIS, for multiple structural alignment of PPIs,
which optimizes the introduced scoring function. The computational problem
involves two NP-Hard subproblems. The first problem is the selection of pairwise
transformations for construction of a uniquely defined multiple alignment [15].
The second problem is, given a multiple superposition, detect the highest scor-
ing common pattern comprised of PPI physico-chemical properties and inter-
actions, i.e. the matching problem [16]. Applying a branch-and-bound method
allows us to practically overcome the exponential nature of the first problem.
To solve the second problem we apply a hierarchical greedy technique. The
overall scheme guarantees an approximation to the optimal solution. Although
each of these subproblems has been previously addressed [16], introduction of
protein-protein interactions imposes a new algorithmic formalism and conse-
quently a completely new program implementation. The method’s running times
are practical (a matter of seconds on a standard PC). We show its applica-
tion to recognition of conserved interactions shared by interfaces of G proteins
with their effectors and regulators as well the PPI clusters created by Mintz
et al. [12].
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2 The Largest Common Interface Problem

In this work we extend the multiple Largest Common Point set problem [15]
to the Largest Common Interface problem. The input is K protein-protein in-
terfaces {(Ai, Bi)}K

i=1. We assume that correspondence between the interface
sides (interacting protein chains) is given, i.e. we do not seek for an alignment
between Ai and Bj

1. We define a protein-protein interface (PPI) as a pair of
interacting binding sites from two non-covalently linked protein molecules. Each
binding site is represented by a set of pseudocenters [7] which are points in
3D space that represent centers of potential interactions: hydrogen-bond donor,
hydrogen-bond acceptor, mixed donor/acceptor, hydrophobic aliphatic and aro-
matic(pi) contacts. These are extracted from the side-chains as well as the pro-
tein backbone. For example, the side chain of Arg is represented by 3 donors
(nitrogen atoms) and an aliphatic pseudocenter (located at the center of mass
of its 3 carbons), while the side-chain of Pro is represented by an aromatic
pseudocenter located at the center of its ring. Only surface exposed pseudocen-
ters that are within 4Å from the surface of the binding partner are considered
(see Box 1).

Box 1: PPI Representation.

(a) The interface surfaces

are represented as dots and

pseudocenters (from both backbone

and side chains) as balls. Hydrogen

bond donors are blue, acceptors

- red, donors/acceptors - green,

hydrophobic aliphatic - orange and

aromatic - white. (b) The interactions created by complementary pseudocenters of

an interface (represented by arrows). The bar presents the complementarity of the

properties. Specifically, hydrogen bond donors are complementary to acceptors,

while hydrophobic aliphatic and aromatic interact with similar ones. The inter-

action distance thresholds are 3.9Å [17] for hydrogen bonds and 8Å for the rest.

We define an interaction as a pair of close enough pseudocenters, one from
each side of the interface, possessing complementary physico-chemical properties
(see Box 1 (b)). According to our definition the number of properties comple-
mentary to a given pseudocenter may be larger than the number of real inter-
actions in which it can participate. Exact definition of real interactions is not
straightforward [17]. To partially overcome this problem we consider all possible
interactions till the last stage of our method. When the final matching is com-
puted, we select only high scoring matched interactions so that the number of
interactions in which each pseudocenter can participate is not exceeded.

1 This correspondence can be obtained from the biological data. Otherwise, it can be
estimated by running twice the pairwise alignment between (A1, B1) - (Ai, Bi) and
(A1, B1) - (Bi, Ai), for each i �= 1.
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Two superimposed pseudocenters are considered similar if they have the
same physico-chemical properties, while the mixed donor/acceptor is similar to
both. Two interactions i = (a, b) and i‘ = (a‘, b‘) are considered similar if the
corresponding pseudocenters (a, a‘) and (b, b‘) are similar and |a − T (a‘)| ≤ ε
and |b − T (b‘)| ≤ ε, where T is an Euclidean 3D transformation.

Select one of the PPIs (e.g. the first) as the pivot interface. For K interfaces we
define the similarity with respect to the pivot PPI. Denote by IN ={(a1, b1),...,
(aK , bK)} a set of similar interactions iff ∀i = 2...K (a1, b1) ∼ (ai, bi). We denote
by PC = (p1, ..., pK) a set of similar pseudocenters iff ∀i = 2...K (p1) ∼ (pi).
In the general case we are given similarity scoring functions, SIN (IN [i]) =
SIN ((a1, b1), (ai, bi)) and SPC(PC[i]) = SPC(p1, pi). The particular scoring
functions used in this work are defined in the Appendix. Given a set of matched
interactions {INt} and a set of matched pseudocenters for each interface side,
{PC[A]p} and {PC[B]l}, we define the scoring function of multiple alignment
to be the minimum2 of the scores between the pivot PPI and the rest of PPIs:
S = mini=2...KSi, where Si is defined as:

Si =
∑

t SIN (IN [i]t) +
∑

p SPC(PC[A][i]p) +
∑

l SPC(PC[B][i]l).

In other words, Si is the sum of scores of all the matched interactions and
the pseudocenters of the two sides. We require that the matched interactions
and pseudocenters are disjoint. The Si score is based on a matching, i.e. IN and
PC. We also introduce the definition of transformation based upper-bound score,
which we will use below. Denote S(T = (t2, t3, ..., tK)) to be the upper bound on
the score for all possible matches of IN and PC after multiple superimposition
of the set {(Ai, Bi)}K

i=1, i.e. {ti(Ai, Bi)}K
i=1, where t1 is identity.

The MAPPIS algorithm presented below guarantees to detect an approx-
imate solution. We define (β,γin,γpc)-approximation algorithm as follows. As-
sume that Sopt = Sopt

IN +Sopt
PC is the optimal score with distance tolerance ε. The

approximation algorithm guarantees to detect a solution with a score at least
1

γin
Sopt

IN + 1
γpc

Sopt
PC with distance tolerance at most ε + β.

3 MAPPIS Algorithm

Our goal is to maximize the scoring function S as defined above. First we gen-
erate a polynomial number of pairwise transformations between the pivot inter-
face and all other interfaces. Then, we apply a branch-and-bound technique to
effectively filter out the low scoring multiple alignments. Third, we apply the ap-
proximation method to solve the multiple matching problem. The overall scheme
guarantees an approximation to the optimal alignment score.

The Transformation Search. For each pair of interfaces (I1 = (A1, B1),
Ii = (Ai, Bi)), 2 < i ≤ K and I1 is the pivot interface, we create a polyno-
mial size set of 3D transformations that can superimpose one interface onto the
2 In this definition the similarity score is measured by the distance of the outlier from

the pivot.
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other. A common alignment technique considers each pair, one from I1 and one
from Ii, of ε-congruent point triplets to create a 3D transformation. To guarantee
a β approximation to the optimal alignment (including multiple superposition)
we need to sample ( ε

β )6 alignments for each triplet pair [14].

The Combinatorial Stage of the Multiple Alignment. Here we adopted a
very fast branch-and-bound technique that allows to apply effectively the bound
criterion [16]. It works as follows. Denote S∗ to be the maximal score found
so far. Each query triangle (or any other set of features) from interface I1 de-
fines a set of possible transformations between I1 and the rest of the PPIs,
CB = {T 2, T 3, ..., T K}, where T i = {tij} is a set of transformations for PPI
i. We require that ∀ti ∈ T i S(ti) > S∗, otherwise the transformation ti can
be rejected. A multiple alignment is a combination of K − 1 transformations,
(t2, t3, ..., tK). We iteratively traverse a set CB in the following manner. Assume
that we have created a vector of first m transformations T = (t2, t3, ..., tm). We
try to extend it with a transformation tm+1, T ∗ = (t2, t3, ..., tm, tm+1). Clearly,
S(T ∗) ≤ S(T ). We can effectively estimate S(T ∗) without actually solving the
matching problem. S(T ∗) is less than the sum of the maximal possible scores
of elements (IN and PC) of I1 which have at least one close element from
each transformed point set t2(I2)...tm+1(Im+1). As we extend the vector T the
number of such elements drops very quickly. If S(T ∗) drops below S∗, then we
disregard the vector T ∗ and start to build another combination. Essentially, we
continue with the vector T and try to add another transformation from T m+1,
and so on. The number of traversals may be exponential, however the practical
running times are significantly lower due to the filtering (bound) step.

Multiple 3D-Pivot Matching. During the iterations from the previous stage,
once we reach the end of the transformation set traversal we have a uniquely
defined set of K transformations. At this stage we need to compute a set of
matched interactions, IN , and a set of matched pseudocenters, PC, that max-
imize the score S. Therefore, we face another combinatorial problem. However,
this optimization problem is NP-Hard even for 2 interfaces (optimization of only
PC score, for 2 structures, is solvable by maximal weight bipartite matching al-
gorithm which is polynomial). For two interfaces the matching problem is similar
to the 3D 4-partite matching problem, where we look for the largest set of disjoint
4-tuples such that each 4-tuple consists of ε-close points. Two interfaces define
four partitions (A1, B1, A2, B2). There are interaction edges between (A1, B1)
and (A2, B2), and there are edges between similar type pseudocenters, i.e. be-
tween (A1, A2) and (B1, B2). There are no edges between partitions (A1, B2) and
(A2, B1), therefore this problem may appear more simple than the general 3D K-
partite matching. However, it is still NP-Hard since the 3D K-partite matching
problem is hard even for three partitions [16].

Here, we apply the following greedy method. First, we greedily select K-tuples
of interactions in the descending order of SIN . Notice, each selected K-tuple may
intersect with at most K K-tuples from the optimal matching with a lower score.
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When no interaction K-tuple can be created, then, separately for each PPI side,
we greedily select pseudocenter K-tuples in the descending order of SPC .

Complexity and Accuracy. Here we summarize the accuracy and complexity
of the MAPPIS algorithm. In case the scoring functions SIN and SPC do not de-
pend on inter atomic distances, i.e. consider only types of interactions and pseu-
docenters, the MAPPIS algorithm is an (β, γin = 2K, γpc = K)-approximation
for any given β. Otherwise, γin and γpc depend on the accuracy of the su-
perposition, i.e. β. Let f(β) and g(β) measure the maximal deviations of the
scores SIN and SPC as a function of β. Then the algorithm approximation is
(β,γin = 2K · f(β), γpc = K · g(β)). The time complexity depends mainly on
the second combinatorial stage. Assume that the maximal depth of the filtering
iterations is K ′ ≤ K. Therefore, the time complexity is O(n3K′

nK log(n)( ε
β )6).

In practice, the method quickly detects a high scoring solution and the expo-
nential number of iterations is avoided (as the input structures are more similar
the bound filter is more effective, thus K ′ << K). The practical running times
are low as reported in Table 1.

Heuristic Improvement. Here we give a heuristic improvement that led to
practically better running times without reduction of the final score. To define
a 3D transformation for each PPI, instead of considering each triplet of points
from Ai ∪ Bi, we utilize the interface interaction information and consider only
two pairs of interacting pseudo centers. Given two interactions from two PPIs,
(aj

i , b
j
i ) ∈ Ij and (at

i, b
t
i) ∈ It, i = 1, 2, we apply the least square fitting to

compute a transformation T ∗, that minimizes the RMSD between the pseudo-

centers:
√

(
∑

i |a
j
i − T ∗(at

i)|2 +
∑

i |b
j
i − T ∗(bt

i)|2)1
4 . This reduces the number

of transformation to
(|A1|

2

)
∗
(|A2|

2

)
, which is O(n4), instead of O(n6) as previously

described. However, the approximation factors cannot be guaranteed.

4 Results

We have applied MAPPIS to several case studies. In all of the examples, we
describe the details of a single solution with the highest score.

4.1 Small G Proteins: Their Regulators and Effectors

G proteins, which are also known as GTPases and GTP binding proteins, are
a well studied group of GTP hydrolases involved in cell signaling [18, 19]. Their
activity is regulated by three distinct families of regulatory proteins: (1) Gua-
nine Dissociation Inhibitors (GDIs); (2) Guanine nucleotide Exchange Factors
(GEFs) and (3) GTPase activating proteins (GAPs). In addition, G proteins
regulate a large number of diverse proteins, known as downstream effectors. In
the examples below, we apply MAPPIS to analyze the interfaces of G proteins
with their effectors and regulators.

Interactions with GDIs. GDIs which interact only with the GDP-bound form
of G proteins are responsible for the regulation and separation of the GTPases
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from the membrane into the cytoplasm. We used MAPPIS to align between
3 interfaces created by GDIs with G proteins of type Cdc42 and Rac (PDB:
1hh4, 1ds6, 1doa). These were recognized by MAPPIS to share 21 conserved
interactions and the obtained alignment is correct and consistent with the results
of both sequence and backbone alignments, as well as the study of Dvorsky et
al. [19]. The advantage of MAPPIS in this case is the insight on the physico-
chemical nature of the interactions created by the side-chain and backbone atoms
of the proteins. Specifically, it provided the details of the interactions created by
amino acids reported by Dvorsky et al. [19] to be important for the stability of
the complex. In addition, it provides explanations for unfavorable substitutions
of amino acids, such as of Alanine to Proline. For example, MAPPIS recognized
that a substitution of the amino acids Ala331/P28 of GDIs (PDB: 1hh4/1ds6)
preserves a hydrogen bond created by the backbone atoms.

Interactions with GEFs. GEF proteins accelerate GDP/GTP exchange as
a response to the extracellular signal. In this study we align 5 interfaces of G
proteins with GEFs from two different SCOP folds: (1) DBL homology domain
(PDB: 1lb1, 1foe, 1kz7, 1ki1) and GEF domain of SopE toxin (1gzs) [19]. Fig-
ure 1(a) depicts the interactions shared by the interfaces. The residue of Thr37,
which was reported by Dvorsky et al. [19] to be important for the interaction
with Glu639 of GEF. MAPPIS indeed recognized such interactions created by the
backbone atom of Thr37. Whereas the side chain of Thr37 was recognized to par-
ticipate in hydrophobic aliphatic interactions with Leu777 of GEF (PDB:1lb1).
The prominent residues Leu69 and Leu72 [19] were also recognized to participate
in conserved hydrophobic aromatic interactions.

Interactions with GAPs. GAP proteins interact with the GTP bound state
of G proteins, accelerating the rate of GTP hydrolysis. We applied MAPPIS to
align 7 interfaces created by G proteins with GAPs from two different folds: (1)
GTPase activation domain, type p50 RhoGAP (PDB: 1tx4, 1ow3, 1am4, 1grn,
2ngr) and (2) Four-helical up-and-down bundle (PDB: 1he1, 1g4u). While 10
interactions were recognized as conserved within the members of the first fold,
only 3 of them are shared by all the 7 interfaces.

Fig. 1. The conserved interactions recognized by MAPPIS, represented as in Box 1.

(a) Alignment of 5 PPIs of G proteins (blue) with GEF regulators from two different

folds (green). (b) Interactions shared by 4 G proteins (blue) with effectors (green) of 3

different folds. Only 3 out of 7 conserved residues are labeled according to PDB:1c1y.
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Fig. 2. Alignments of PPIS clusters. Shared interactions recognized by MAP-

PIS represented as in Box 1. (a) Alignment of 5 PPIs from cluster #673(PDB:

1i9rAB,1jh5AB, 1d0gAB, 1a8mAB) [12]. The 4 shared aromatic interactions are repre-

sented by the pseudocenters. (b) Alignment of 6 PPIs from cluster #99 (PDB: 1l3bAD,

1l0oAB, 1b99AD, 1e7pAD, 1gttBC, 1iunAB). The PPIs are created by proteins of dif-

ferent overall folds but share 4 hydrophobic aliphatic interactions. (c) Alignment of 6

PPIs of Trypsin-like serine proteases (4sgb, 1ppf, 1acb, blue and red) and Subtilisin-

like (1cse, 2sic, 1oyv, green and yellow). (d) The common interactions recognized by

MAPPIS. The residues that are conserved in sequence in all the proteins are annotated

according to PDB:4sgb.

Interactions with Effectors. Association of the G proteins with the effector
proteins enables them to control a wide range of intracellular signaling pathways.
We compared between the interfaces of 4 complexes of G proteins with effectors:
(1) cH-p21 Ras with Phoshoinositide 3-kinase (PI3K) (PDB:1he8); (2-3) Rap1
with c-Raf1 RBD (PDBs: 1c1y,1gua); (4) CDC42 with PDZ domain (PDB:1nf3).
In spite of the fact that the effectors of these complexes belong to three different
folds and share almost no sequence similarity, all of the interfaces were recognized
to share a pattern of 7 interactions. (see Figure 1(b)).

It must be noted that the interfaces in these examples are created by G
proteins, which can be superimposed by multiple backbone alignment meth-
ods [20, 21]. However, these methods do not recognize the similarity of their
physico-chemical properties and do not consider their interactions with the bind-
ing partners, which in many cases are proteins with totally different overall folds.
For some of the examples presented below the superimposition and the matching
problems can not be solved by standard protein backbone alignment methods.

4.2 PPI Clusters

We have applied our method to analyze the interactions shared by PPI clus-
ters [12] created by iteratively applying a pairwise alignment method [11]. The
new MAPPIS software with its ability to detect consensus binding organizations
now allows to acquire additional insights on the interactions shared by all the
members of the created clusters. The results that are automatically obtained
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Table 1. Performance of MAPPIS

Case study Num. of Mean Num. of interactions Run time
PPIs PPI size theor. : real : cons. (sec.)

G-proteins with GDIs 3 225 56 : 37 : 21 23
G-proteins with GEFs 5 124 59 : 39 : 4 54
G-proteins with GAPs 7 177 41 : 27 : 3 155
G-proteins with Effectors 4 133 40 : 30 : 7 22
Cluster 673 [12], TNF Family 5 165 49 : 33 : 4 48
Cluster 99 [12] 6 120 34 : 25 : 4 27
Serine Proteases 6 120 48 : 27 : 8 163

by MAPPIS are consistent with the manual biological inspections of Mintz et
al. [12]. For example, when applied to cluster number 673 with 5 PPIs of members
of the TNF (tumor necrosis factor) family, MAPPIS recognized an exceptional
conservation of 4 aromatic interactions shared by all the interfaces (see Figure
2(a)). When applied to 6 PPIs of cluster number 99, MAPPIS revealed an pat-
tern of 4 conserved hydrophobic interactions (see Figure 2(b)). All of the PPIs in
this cluster are created by proteins of different folds, but the low-level function
defined for most of them by GO is the Transferase activity [12]. An additional
example is a cluster created by serine proteases, which are the most well studied
example of functionally similar proteins with different overall folds: trypsin and
subtilisin [4,7,10]. The MAPPIS solution is correct due to the correct alignment
of the catalytic residues of these proteins. The advantage of MAPPIS is in the
analysis of similarity of the created interactions (see Figure 2d).

4.3 Performance Evaluation

The general performance of MAPPIS is summarized in Table 1. The running
times are measured on a standard PC, Intel(R) Pentium(R) IV 2.60GHz CPU
with 2GB RAM. In each example, the table presents the average PPI size mea-
sured by the sum of pseudocenters of its two binding sites. In addition, we
provide the mean number of interactions, represented by three values: (1) The

Fig. 3. Dependence of the number of matched interactions and matched non-

interacting pseudocenters on the number of aligned PPIs
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number of theoretical interactions defined by all pairs of complementary pseudo-
centers that can potentially interact with each other; (2) The estimated number
of “real” interactions after the limitation on the maximal number of interactions
in which each pseudocenter can participate; (3) The number of conserved in-
teractions shared by all of the aligned PPIs as detected by MAPPIS. Figure 3
presents the dependence of the common pattern of interactions on the number
of aligned PPIs. In each example, the number of aligned PPIs ranges from two
to the size of the dataset. The most interesting example is the alignment of PPIs
of serine proteases, where we could enlarge the number of aligned PPIs (added
PDBs:1csoEI, 1d6rAI, 1c9tAG). As can be seen, the common core converged to
8 common interactions, which indicates a strong conservation of the interaction
pattern. Interestingly, the number of common pseudocenters converged to zero.

5 Summary and Conclusions

We presented a novel computational method, MAPPIS, for recognition of com-
mon physico-chemical properties and their interactions shared by a set of protein-
protein interfaces (PPIs) without the need to assume similarity of sequential
patterns or backbone patterns. We have shown its applications to several bio-
logical case studies. Our results are consistent with the available biological data.
Computationally, the major advantages of our technique (e.g. over sub-graph iso-
morphism search strategies) are (1) polynomial time approximation algorithm
for two PPIs, (2) for multiple PPI alignment, the practical convergence of the
branch-and-bound stage to a high scoring solution is very quick and the ex-
ponential number of iterations is avoided. Practical running times range from
seconds to several minutes.

Despite the guaranteed approximation to the given scoring function the
method’s approximation ratios are relatively high. The most problematic stage
is the computation of the final matching, which gives a K-approximation. As a
result there is a dependence on the pivot selection and on the order of the input
PPIs. In our future research we intend to address the estimation of the biological
significance of the recognized patterns. Specifically, we will explore what is the
minimal number, combination, and type of interactions that are responsible for
the similarity in binding and function. In addition, we consider to extend the
current simple physico-chemical model which has no explicit treatment of hydro-
gen bond directionality, electrostatic potentials, water mediated interactions [22]
and flexibility of protein molecules. The challenge is to incorporate the above
mentioned considerations while preserving algorithmic efficiency.
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Appendix. Physico-Chemical Score

Similarity between two superimposed interactions i = (a, b) and i‘ = (a‘, b‘) is mea-
sured by:

S(i, i‘) = SIN (i) + SIN (i‘) + SPC(a, a‘) + SPC(b, b‘)

SIN (i) =

propen(i) ·

⎧⎪⎪⎨
⎪⎪⎩

0, dist(i) > max dist(i)
(max dist(i) − dist(i))/(1 + charge comp(i)) chem(i) = HB
(max dist(i) − dist(i))/(1 + shape comp(i)) chem(i) = ALI
(max dist(i) − dist(i))/(1 + shape comp(i) + nPII(i)) chem(i) = PII

The similarity between two superimposed pseudocenters is defined by [16]:

SPC (a, b) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, dist(a, b) > max dist(a, b) or chem(a) �= chem(b)
0, shape(a, b) > 0.2 or nS(a, b) > 0.2
(max dist(a, b) − dist(a, b))/(1 + charge(a, b)) chem(a) = HB
(max dist(a, b) − dist(a, b))/(1 + shape(a, b) + nPII(a, b)) chem(a) = PII
(max dist(a, b) − dist(a, b) + vALI(a, b))/(2 + 20 ∗ shape(a, b)) chem(a) = ALI

• dist(a, b) - the distance between a and b after the superimposition. dist(i) - the
distance between interacting pseudocenters a and b.

• chem(a), chem(i) - the physico-chemical property of the point a or interaction i.
There are three types of properties: Hydrogen Bonding (HB), Aliphatic Hydropho-
bic (ALI) and Aromatic (PII).

• max dist(a, b) - maximal allowed distance between a pair of pseudocenters, defined
by ε =3.0Å. max dist(i) - the maximal distance allowed for the specific type of
interaction. The default thresholds are γ =3.9Å for hydrogen bonds [17] and
γ =8.0Å for hydrophobic aliphatic and aromatic interactions.
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• charge(a) - the partial atomic charge of the atom a, which can form hydrogen
bonds. charge(a, b) = |charge(a)− charge(b)| - measures the similarity of charges.
charge comp(i) = |charge(a) + charge(b)| - measures the complementarity of
charges.

• shape(a) - the average curvature of the surface region created by a. Calculated as an
average of the solid angle shape functions [23] with spheres of radius 4,5,6 and 7Å .
The sphere centers are located at projection point of a to the surface. shape(a, b) =
|shape(a) − shape(b)| - measures the similarity of shapes. shape comp(i) = |1 −
shape(a)−shape(b)| - measures the complementarity of shapes which sums to one.

• nS(a) - normal vector at projection point of a to the surface, nS(a, b) = nS(a) ·
nS(b).

• vALI(a, b) - the overlap of the hydrophobic group spheres of a and b, approximated
by the difference between sum of radiuses and the distance between the centers.

• nPII(a) - for aromatic pseudocenters denotes the normal to the plane of the aro-
matic ring. nPII(i) = nPII(a) · nPII(b) - represents the angle between two inter-
acting aromatic ring.

• propen(p) - the propensity of the physico-chemical property in the interface com-
pared to the overall protein chain. The propensities of the pseudocenters were
calculated by Mintz et al. [12]. propen(i) = propen(a) · propen(b).
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Abstract. Frequent itemset mining is a promising approach to the
study of genomic profiling data. Here a dataset consists of real num-
bers describing the relative level in which a clone occurs in human DNA
for given patient samples. One can then mine, for example, for sets of
samples that share some common behavior on the clones, i.e., gains or
losses. Frequent itemsets show promising biological expressiveness, can
be computed efficiently, and are very flexible. Their visualization pro-
vides the biologist with useful information for the discovery of patterns.
Also it turns out that the use of (larger) frequent itemsets tends to filter
out noise.

1 Introduction

Frequent itemsets are often used in Data Mining research [11]; they can supple-
ment the more traditional statistical approach [2]. The concept is simple, many
efficient algorithms are devised to detect different types of frequent itemsets,
and there is a rich literature describing associated topics. For instance, many re-
searchers dealt with the problem of finding interesting sets, and the fuzzy logic
approach also gave a new impetus. The most well-known application is in the
area of market-basket analysis. In this case a frequent itemset is a set of prod-
ucts that is often purchased together. From such a set one can easily deduce
association rules of the form “if one buys X , one (often) buys Y too”.

In this paper we apply the frequent itemset approach to explore copy number
changes in the genome. Chromosomal instability in tumors leads to DNA copy
number alterations with associated gain or loss of genes important in tumor
development [5]. Array-based comparative genomic hybridization (array CGH)
allows for high-throughput genome-wide screening of these DNA copy number
changes [1,7,9]. Typically, these experiments involve co-hybridization of a few
hundred fluorescently labeled patient DNA samples with normal reference DNA
onto microarrays containing several thousands of large-insert genomic clones
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(relatively short pieces of DNA) such as bacterial artificial chromosomes (BACs).
The resulting dataset is a database of clones, each consisting of a few hundred real
numbers. Any such number describes the normalized log2-ratio of the number of
clone copies found in a given patient sample compared with the reference DNA.
When there is no copy number change in the patient DNA, the log2-ratio is
expected to be 0 (no change). When the log2-ratio lies above a certain threshold
or below another fixed threshold, the patient has a gain or a loss, respectively,
for this clone. In principle, the boundaries between no change and change are
very strict, allowing discretization of the data. However, factors such as tissue
heterogeneity (i.e., a loss or a gain is present in only a subset of the cells) and
the use of amplification procedures introduce more variation in measurements,
making such boundaries less strict. And finally, we have the usual problems like
measurement noise.

The database records can be viewed in (at least) two different ways. First,
one can look at the clones as transactions, and view the samples as items; this is
called here the frequent sample sets model. Note that this is the way in which the
data is usually presented. Second, one can also see the samples as transactions,
and the clones as items; this we call the frequent clone sets model. In this paper
we treat both approaches, with emphasis on the first one. If we adhere to the
first choice, we are interested in groups of samples, where the group elements
share some common behavior; for the second choice, we try to find associations
between clones. We shall provide many examples of the use of frequent itemsets
in this biological setting.

For related work we refer to [8], where — among other things — minimal and
related gain and loss zones are detected using frequent pattern mining. In [10]
a method is discussed that deals with finding interesting association rules. The
first step is to generate frequent itemsets. From these one can deduce a huge
amount of association rules. The authors deal with a method to filter out, after
all rules are discovered, the most interesting rules for biologists.

In the current paper we generate the frequent itemsets and extract useful in-
formation from those. We also show that frequent itemsets can be used to reduce
the effect of noise. We mainly focus on visualizations, which are easily made and
from which biologists can deduce information about certain relations between
clones or patient samples. Our method is meant to be used as an exploratory
tool, aiming at pattern discovery, that can be used in combination with other
methods.

We shall not treat the database in any detail, but rather refer to the paper
where it originates from [6]. In a few places we shall provide the necessary bio-
logical background, and we mention the biological consequences of the proposed
methods. Anyway, there is a lot of data preparation involved, apart from some
trivial data cleaning. In particular we mention the problem of distinguishing
change from no change, as mentioned above, which is both of technical as well
as biological nature.

The paper is organized in the following way. We first describe the method and
illustrate it by using artificial data (Section 2 and Section 3), for both models



106 J.M. de Graaf et al.

mentioned earlier. In Section 4 we apply the techniques to the real life data from
[6] and focus on the biological consequences of the proposed methods. We end
with some conclusions and issues for further research.

2 Frequent Itemsets

Suppose we have a dataset D consisting of subsets (usually called itemsets) of
a given finite set I. The subsets have unique identifiers, so multiple occurrences
of the same subset may appear. It is also possible to consider the dataset as a
(time ordered) series, but this viewpoint is not taken here.

For any subset S of I we define its support as the number of elements in
D that contain S. An itemset is called frequent if its support is larger than or
equal to a pre-given support threshold minsup. If an itemset has k elements, it
is called a k-itemset.

The first main problem in frequent itemset mining is to find all frequent
itemsets for a given D and minsup. There exist many efficient implementations
to tackle this problem. The fastest ones rely on so-called FP-trees and use the
Apriori property [11]. For the experiments we used the implementation from [3].

In this paper we focus on data from array CGH studies. Here the original
database consists of real numbers, but it is discretized to a database describing
if a sample has a gain on a clone or not, or to a database showing if a sample has
a loss on a clone or not. This is done because in CGH analysis one is often more
interested in whether or not a patient has a gain (loss) at some clone, and not
in the exact value. So the database consists of itemsets that are either sets of
samples that have higher (lower) value than normal for a given clone, or sets of
clones that have higher (lower) value than normal for a given sample. depending
on whether we are more interested in the gains or the losses. In the first case,
the clone is the identifier of the itemset, in the second case the sample is the
identifier. One can think of the database as a two-dimensional array where rows
correspond to clones and columns to samples (or the other way round in the
second case). The transformed database contains only zeros and ones. If a clone
occurs more (less) than normal for a given patient (its value being higher (lower)
than some threshold), it is assigned a one on the corresponding array position,
otherwise a zero.

3 Simulated Data

A dataset with similar structure to the one from array CGH studies was simu-
lated as follows. A total of 150 samples, with 3200 observations per sample, are
divided into three main groups of 50 samples each. Samples in each group are
characterized by having in common a specific copy number effect in one of the
chromosomes, as well as other effects in other chromosomes, as summarized in
Table 1. The effect is assumed to hold for a given number of consecutive clones
(shown between brackets) at the beginning of the affected chromosomes.
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These three groups can be thought of as referring to patients with the same
disease, but different genotypes. This is observed for example in many cancers,
where various genotypic mechanisms can lead to the same result, as in the same
kind of cancer. It is important to identify these different mechanisms since they
often are associated with varying susceptibility levels to treatments and, as a
consequence, varying chances of recovery. Sometimes these mechanisms share
part of their structure, but differ in other parts.

Unaffected clone intensities are assumed to be independent of each other and
to follow a normal distribution with mean 0 and standard deviation 1. Affected
clone intensities are also assumed to be independent of each other and have a
normal distribution with standard deviation 1, but their mean is taken as either
3 (if effect is a gain) or –3 (if effect is a loss).

Table 1. Summary of simulated effects (G = gain, L = loss)

Samples Chromosomes Gains/losses
affected 1 3 7 10 11 13 18 20 (total)

136–150 G(60) G(40) G(30) 130/0
121–135 G(60) L(50) 60/50
101–120 G(60) 60/0
91–100 0/0
76–90 L(80) L(60) 0/140
61–75 L(80) G(50) 50/80
51–60 L(80) 0/80
36–50 G(60) G(30) G(20) 110/0
21–35 G(60) L(50) 60/50
1–20 G(60) 60/0

In order to evaluate the effect of having more or less noise in the data, we have
also simulated a dataset with the same structure and effects, where the standard
deviation of the measurements was 0.6 instead of 1. This dataset is referred to as
the ideal dataset : it corresponds to an “ideal” scenario, where there is very good
separation between measurements with copy number and without. Of course,
in such a case no special method has to be used to identify effects. In practice,
however, it is more common to observe datasets with less perfect separation, as
the first one. This dataset is called the noisy dataset.

3.1 The Frequent Sample Sets Model

We now regard the database as an ordered series of 3200 clones. Each record (i.e.,
clone, transaction) consists of 150 real numbers, corresponding to the samples
(patients). As mentioned before we first transform the database into a database
of zeros and ones after defining suitable thresholds for gains and losses.

In order to obtain insight in the data, and also to give a first (simple) ap-
plication of frequent itemsets, in Figure 1 we show all frequent samples, i.e.,
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1-itemsets. In the left hand side picture we have the ideal dataset, in the right
hand side picture the noisy dataset. In a sense, these pictures give simple snap-
shots of the entire dataset: the picture on the left clearly reflects Table 1, while
the dense regions of +’s and ×’s in the picture on the right also do so, but less
convincing. The vertical lines denote the chromosome boundaries, with the chro-
mosome numbers on top. We show the 1-itemsets for gains and the 1-itemsets
for losses in one picture; gains (value > 2.0) have +’s, losses (value < −2.0) have
×’s. If a 1-itemset {i} has at least minsup = 30 gains, those gains are plotted
horizontally at y-level i, and similarly for the losses. For example, sample 80
has a series of ×’s for chromosomes 1 and 11, and single ×’s for clone 1306 (in
chromosome 7) and clone 1623 (in chromosome 9). For the ideal dataset there
are 115 frequent 1-itemsets for gains (meaning there are 115 patient samples
having a gain on at least 30 clones), and 70 for losses — as expected. The noisy
dataset has 150 frequent 1-itemsets for both, or equivalently: every 1-itemset is
frequent here, so every patient has at least 30 gains and 30 losses!
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Fig. 1. Frequent samples (1-itemsets) for ideal (left) and noisy (right) dataset; gains

(+) and losses (×)

The left hand side picture clearly shows the expected effects, the right hand
side picture is much more diffuse. The supports on the left (the numbers of
+/×’s in a single row) are smaller and the distribution is more crisp.

Note that these two pictures are the only ones that contain two types of
itemsets in one image. In order to be frequent, an itemset should have at least
some minimum number of gains or losses (but not together). In the sequel we
also mention “combined gains and losses”, which means that we add the numbers
of gains and losses.

We now try to find larger sets of samples that share some common behavior,
i.e., we look at k-itemsets with k > 1. We first examine gains; we let minsup = 60.
In the plots from Figure 2 we depict the frequent 2-itemsets. Every horizontal
series of +’s indicates the clones that have gains for both samples in the set.
The frequent itemsets are depicted in the order in which they are generated by
the algorithm from [3]; roughly speaking, larger supports occur for the higher
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numbered sample sets. Neighbouring sample sets usually have a non-empty in-
tersection in this order (which is not the case if they are ordered by support).
Again, the left hand side picture is for the ideal dataset. In this case we have
443 frequent 2-itemsets; the 2-itemset {138, 140} has the highest support: 122.
This means that there are 122 clones on which sample 138 and sample 140 both
have gains. Note that the gains series on chromosome 7 is not visible, since
its length (50 clones) is smaller than minsup and samples 61–75 have no other
gains. Therefore no combination of two samples from 61–75 (the only samples
that have gains on chromosome 7) can reach the threshold 60. Furthermore, the
samples 61–75 will not occur in any of the 443 frequent 2-itemsets.
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Fig. 2. Frequent 2-itemsets for ideal (left) and noisy (right) dataset; gains
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Fig. 3. Frequent sample sets (3-itemsets) for noisy dataset; losses; left: loss if value

< −2.0, right: loss if value < −1.5

For the noisy dataset (Figure 2, right) there are 405 frequent 2-itemsets; the
2-itemset {139, 141} has the highest support: 105. Like in the ideal case we do
not see the gains at chromosome 7 here either.

This example also reveals that a larger value of the size of the itemsets
allows for better pictures, in particular for the noisy case. Patterns are much
more visible now. In a next step one might decide to study chromosomes 3, 10,
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18 and 20 in more detail, e.g., using the same method again on these specific
chromosomes.

As a final picture we show the frequent 3-itemsets (at least having 80 common
losses) for the noisy dataset, see Figure 3. In the left plot we have a loss if the
dataset value is smaller than −2.0 (344 itemsets), in the right plot if the value is
smaller than −1.5 (459 itemsets). This shows the dependence on the threshold
defining gains/losses. Note that losses on chromosome 13 are not visible, because
they only occur on 50 clones, and for samples which do not have losses elsewhere.
It appears that the itemsets show a lot of overlap — a phenomenon that emerges
even more for larger values of the itemset size.

3.2 The Frequent Clone Sets Model

As said in the introduction, we can also look at the database as being a series of
samples. In that case we are interested in sets of clones that behave in a similar
way, e.g., are all gains on at least some minsup common samples.

The picture below (Figure 4, left), which is just a “random” example, shows
the 1136 frequent 7-itemsets (so each itemset consists of 7 clones) where each
element has a value larger than 2.0 on at least minsup = 50 common (among
the 7 elements) samples, for the noisy dataset. On the right the 7 elements are
plotted for these sets. As observed above, there is a lot of overlap present here.
Furthermore note that only the clones at the beginning of chromosome 3 are
gains for at least 50 patient samples, which is consistent with Table 1.

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160

fr
eq

ue
nt

 c
lo

ne
 s

et
s

samples

 0

 200

 400

 600

 800

 1000

 1200

 400  410  420  430  440  450  460

fr
eq

ue
nt

 c
lo

ne
 s

et
s

clones

Fig. 4. Frequent clone sets (7-itemsets) for noisy dataset; gains; right: the set elements

4 Application to Colon Cancer Data

Nakao et al. [6] analyzed copy number changes in the genomes of 125 colorectal
tumors using array CGH on microarrays containing 2463 BAC clones that cov-
ered the human genome at 1.5 Mb resolution. Their publicly available dataset
contains normalized log2-ratios for 2124 clones (after filtering), located on chro-
mosomes 1–22 and the X-chromosome (here referred to as 23). In this dataset
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any value larger than 0.225 is considered as a gain, any value smaller than –0.225
is considered as a loss. This threshold corresponds to values between 2 and 3
standard deviations from the mean. The total number of gains and losses varies
between 2 and 1020 per sample.

The authors concluded that the majority of clones were infrequently gained
or lost, with 95% of the changes occurring less than 35% of the time. However,
high-frequency gains were detected on chromosomes 7p (35%), 7q (35%), 8q
(42%), 11q (35%) and 20q (65%), and high-frequency losses were detected on
5q (35%), 8p (37%), 17p (46%), 18p (49%), 18q (60%), and 21q (35%). The
distribution of alterations over the individual patients was not explored.

In Figure 5 we depict all 125 1-itemsets (combined gains and losses). In the
left panel the samples are shown in the order in which they occur in the original
dataset; in the right panel they are ordered with respect to their support. The
1-itemset {53} has the highest support: 1020.
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Fig. 5. All 1-itemsets, combined gains and losses; left: original order, right: ordered

with respect to support

0

200

400

600

800

1000

0 500 1000 1500 2000

fr
eq

ue
nt

 s
et

s

clones

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181920212223

 0

 100

 200

 300

 400

 500

 600

 700

 0  500  1000  1500  2000

fr
eq

ue
nt

 s
et

s

clones

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181920212223

Fig. 6. Frequent sample sets; 2-itemsets; left: gains, right: losses

In Figure 6 we show the 985 frequent 2-itemsets for gains (left) and the 629
frequent 2-itemsets for losses (right), both for minsup = 100. Again a larger
value of the itemset size gives rise to a clearer picture, showing e.g. common
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regions of gains on chromosomes 7, 8, 13, 20 and 23, which is consistent with the
conclusions in [6]. However, the results for the synthetic noisy dataset are more
outspoken, due to the random nature of this set.

This becomes even more apparent if we consider the 55 10-itemsets (minsup
= 100), see Figure 7. To the left we see the usual plot, showing a very small
region in chromosome 11 having a gain, also detected in [6]. This region was not
so clear from Figure 6, showing the importance of studying larger itemsets and
thus filtering out more noise. To the right we plot for each set its 10 elements.
This picture shows that the sets have quite a lot in common. It could have been
worse: in the current situation there are no 11-itemsets; the 10-itemsets are all
maximal (i.e., all their supersets are infrequent) and hence closed (i.e., all their
supersets have lower support). The number of frequent itemsets depends on their
size and on the support threshold minsup, as shown in Table 2. It is a challenging
task to find combinations that give rise to interesting visualizations.
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Fig. 7. Frequent sample sets (10-itemsets); combined gains and losses; right: the set

elements

From the biological viewpoint, the visualizations yield relevant information
about the dataset, which is commonly hard to obtain. First, from Figure 5 no
clear patterns emerge, a common feature of tumor samples. As they grow, tumors
accumulate genomic changes, each tumor accumulating different changes. Most
of these changes occurring during tumor growth are believed to be results of
random processes, adding noise to the decisive changes that turned the tissue
into a tumor in the first place. Then in Figure 6 (left) it shows that, by focusing
on 2-itemsets with gains, the noise is filtered out and some patterns become
evident, such as gains in chromosomes 7, 8, 13 and 20. By then progressively
increasing the value of the itemset size, noise is step-by-step being filtered out
and only the most consistent patterns remain. Indeed, only 20 of the 125 samples
(16%) in the dataset contribute to the 10-itemsets represented in Figure 7, but
these have a consistent pattern of copy number changes in chromosomes 8, 18 and
20. Also chromosomes 11 and 17 show some activity. Changes in chromosome 23
(the X chromosome) are often ignored, as they mostly indicate that the sample
and the control are of opposite genders, which is not of main interest.
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Table 2. Number of frequent itemsets for different size and minsup: gains/losses/

combined gains and losses

minsup
Size 80 90 100

1 90/84/97 87/79/96 84/76/95
2 1519/1002/3196 1236/800/2942 985/629/2743
3 6281/2222/37417 3675/1282/29634 2036/726/23228
4 10135/1618/179576 4001/647/112866 1601/285/71539
5 8090/621/425627 2147/213/210119 546/79/103318
6 3692/185/581939 556/52/220138 39/12/83637
7 972/30/507966 55/4/148282 0/0/43049
8 155/1/300636 2/0/65081 0/0/12865
9 9/0/117955 0/0/16428 0/0/1739
10 0/0/27494 0/0/1864 0/0/55
11 0/0/3048 0/0/43 0/0/0
12 0/0/79 0/0/0 0/0/0

We now look at the frequent clone sets model. Experiments showed that
chromosome 20 was really dominant. Taking into account only clones 1–1800,
finer patterns on other chromosomes can be discovered. As an example we show
the 199 9-itemsets for gains (Figure 8), with minsup = 30. The right picture
has the set elements (cf. Figure 4), all on chromosome 8. The four neighbouring
clones near 900 are indeed of biological interest.

It is possible to use the frequent itemset approach for the discovery of partic-
ular phenomena. For example, there is exactly one 4-itemset, the set of samples
{53, 59, 66, 80}, having 300 or more common gains and losses.

If one keeps track of the distance between consecutive common gains (and/or
losses) one can order the frequent itemsets found. For example, for the 4-itemset
mentioned before, 69% of the 313 common gains and losses are really consecutive;
if one allows for at most one intermediate normal clone (a so-called gap), this
percentage rises to 87%. In Figure 9 above we plot these last percentages for all
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Fig. 9. Consecutiveness percentages; left: 1-itemsets, gains and losses; right: 2-itemsets,

gains (sets on x-axis)

125 1-itemsets (gains and losses; ordered on the x-axis with respect to increasing
support; left) and the 985 frequent 2-itemsets (gains; minsup = 100; right).
Efficiently incorporating consecutiveness into frequent itemset mining seems non-
trivial and is left for future work.

5 Conclusion and Further Research

We presented a method to discover patterns in array CGH datasets. We make use
of frequent itemset mining in order to obtain combinations of samples or clones
that share some common behavior. The method is flexible, fast (the generation of
a picture usually takes a few seconds), capable of dealing with noise, and allows
for different types of post-processing. In contrast with many other techniques
the method is largely unsupervised, and allows for individual patient tracking.

Once given the frequent itemsets, one can use many different Data Mining
techniques. It is for instance possible to use Self Organizing Maps (SOMs) and
the like in order to obtain visualizations. In Figure 10 the 55 10-itemsets from
Figure 7 are embedded in the unit square, using a push-and-pull network [4].
The Euclidean distance between embedded data points in the plain resembles
the “gains and losses distance”, obtained by squaring the difference in numbers
of gains and losses on the different chromosomes.

We are very interested to extend the frequent itemset analysis to amplified
array CGH data, which is more noisy due to reproducible ratio distortions re-
sulting from differential processing of repetitive and polymorphic regions by the
amplification enzyme [1]. In this dataset, the boundaries depend on the clone at
hand, and new techniques are needed to deal with this varying boundary value
issue. Perhaps fuzzy logic might be useful. We would also like to add clinical data
such as stage of the tumor or age of the patient, expressed in association rules
with attached interestingness measures. Finally, we will explore application of
frequent itemsets to other types of genomic data, such as single nucleotide poly-
morphism genotyping data.
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Abstract. We present a novel approach to gene selection for microarry
data through the sensitivity analysis of support vector machines (SVMs).
A new measurement (sensitivity) is defined to quantify the saliencies
of individual features (genes) by analyzing the discriminative function
in SVMs. Our feature selection strategy is first to select the features
with higher sensitivities but meanwhile keep the remaining ones, and
then refine the selected subset by tentatively substituting some part with
fragments of the previously rejected features. The accuracy of our method
is validated experimentally on the benchmark microarray datasets.

1 Introduction

Gene selection is of fundamental and practical significance to research in biology
and medicine, especially in genetic diagnosis and drug discovery. Due to the new
advances in microarray technology, huge amounts of raw data are produced by
microarray devices, while researchers care about whether or not a small group
of genes is informative and sufficient such that the computation is reduced while
the accuracy is increased. Essentially, gene selection is a typical application of
the feature subset selection technique in machine learning.

The feature (gene) selection problem refers to the task of identifying and
selecting a representative subset of features (genes) as small as possible to rep-
resent a larger set of often mutually redundant features (genes) with different
associated measurement costs and/or risks. Feature selection methods can be
classified into the following three categories [1,2], based on the integration into
the learning method (see Fig. 1). In the filter approach, the selection of features
is independent of the learning algorithm: it filters out irrelevant attributes be-
fore induction occurs. Wrapper approach is to use an induction algorithm to
estimate the merit of the searched feature subset on the training data and to use
the estimated accuracy of the resulting classifier as its metric. The Embedded
approach embeds the selection within the induction algorithm.

As a popular supervised learning mechanism, support vector machines
(SVMs) have been widely used in pattern recognition, regression, image process-

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 117–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



118 D. Wang et al.

Fig. 1. Filter, wrapper and embedded feature selection approaches

ing, and bioinformatics, etc., and feature selection for SVMs has become an in-
teresting topic with both theoretical and empirical significance. Weston et.al. [3]
introduced a feature selection approach for SVMs by approximating the pres-
ence of each feature with a real number from 0 to 1, and optimizing the presence
weights using the gradient descent method. However, the features are evaluated
separately, and no correlation between them is considered. Guyon et al. [4] pro-
posed SVM-RFE, a backward elimination method of gene selection using SVMs
based on recursive feature elimination (RFE). This method has recently been
extended by Rakotomamonjy [5] through an analysis two kinds of generalization
error upper bounds. As SVM-RFE and its extension use a greedy strategy to
perform backward elimination, they usually lead to suboptimal solutions.

In this paper, we introduce a new approach to feature selection for SVMs,
feature selection via sensitivity analysis and refinement (FSSAR). In this frame-
work, we first train the SVM and calculate the sensitivities of the features. We
rank the features by their sensitivities and select the features with high sensitiv-
ities. Furthermore, the ranked list of features undergoes a refinement procedure
and generates the final feature subset. Our method combines the simplicity of
filter approach and the advantage of wrapper approach: we rank features af-
ter training SVMs for only once, which is more computationally efficient than
RFE-based methods.

The paper is organized as follows. Section 2 provides the principles about
SVMs. The framework and details about our FSSAR method are introduced in
section 3. Section 4 presents the experimental results and comparisons. The last
section gives the conclusion.
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2 Support Vector Machines

Given � training pairs (x1, y1), ..., (x�, y�) , where xi ∈ �d is an input vector
labeled by yi ∈ +1,−1 for i = 1, ..., �, support vector machines [6] search for a
separating hyper-plane with largest margin, which is called an optimal hyper-
plane wT x + b = 0 . This hyper-plane can classify an input pattern according
to the following function f(x) = sgn(wTx + b) where

sgn(k) =
{

+1, if k ≥ 0
−1, if k < 0

In order to maximize the margin for linearly separable cases, we need to find
the solution for the following quadratic programming problem

min
1
2
‖w‖2 (1)

s.t. yi(wT xi + b) ≥ 1, ∀i = 1, ..., � (2)

In fact, there are many linearly non-separable problems in the real world. In
order to solve these problems by linear SVMs, we have to modify the previous
method by introducing non-negative slacking variables ξ−i ≥ 0, i = 1, ..., �. The
non-zero ξ > 0 are those training patterns that do not satisfy the constraints
in Eq.(2). The optimal hyper-plane for this kind of problem could be found by
solving the following quadratic programming problem

min
1
2
‖w‖2 + C

�∑
i=1

ξi (3)

s.t. yi(wTxi + b) ≥ 1 − ξi, ∀i = 1, ..., � (4)
ξi ≥ 0 (5)

The problem is usually posed in its Wolfe dual form with respect to Lagrange
multipliers αi ∈ [0, C], i = 1, ..., � , which can be solved by standard quadratic
optimization packages. The bias b can easily be calculated from any margin vec-
tor xi satisfying 0 < αi < C. The discriminative function is therefore given by

f(x) = sgn(wT x + b) = sgn(
�∑

i=1

αiyixT
i x + b) (6)

In a typical classification task, only a small number of the Lagrange multi-
pliers αi tend to be greater than zero. The respective training vectors are called
support vectors, as f(x) depends on them exclusively.

For some problems, improved classification can be achieved using nonlinear
SVMs [6]. The basic idea of nonlinear SVMs is to map data vectors from the input
space to a high-dimensional feature space using a nonlinear mapping Φ , and
then proceed pattern classification using linear SVMs. However, the nonlinear
mapping Φ is performed by employing kernel functions K(xi,x), which obeys
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Mercers conditions [6], to compute the inner products between support vectors
Φ(xi) and the pattern vector Φ(x) in the feature space. For an unknown input
pattern x, we have the following discriminative function,

f(x) = sgn(
�∑

i=1

αiyiK(xT
i x) + b) (7)

Theorem 1. If the � training samples belonging to sphere of radius R are lin-
early separable with the margin M (M = frac1‖w‖), then the expectation of the
error probability has the bound [6],

EPerr ≤ (1/�) · E{R2‖w‖2} (8)

where the expectation is taken over all training sets of size �.

This theorem justifies that the performance of SVMs depends not only on the
margin M , but also the radius R, which is controlled by the mapping function
Φ and can be calculated via solving a quadratic programming problem [7].

3 Feature Selection for SVMs Using FSSAR

3.1 Sensitivity Analysis of Discriminative Functions

Intuitively, the same perturbation in different features will cause the discrimina-
tive hyper-plane deviate to various extents. Greater deviation in the hyper-plane
corresponds to feature with stronger impact. Here, we present an example of lin-
early non-separable classification problem to illustrate this idea.

In a 2-D (x1 and x2 ) linearly non-separable case, we use a linear SVM
as the classifier (see Fig. 2). Fig. 2(b) and Fig. 2(c) show the discriminative
hyper-planes before and after feature x1 and x2 feature are perturbed by �
respectively. According to the scaling and translation invariant properties of
SVMs, the margin width does not change when features are disturbed, however,
the position of discriminative hyper-plane does change accordingly. Assume the
displacements of the hyper-plane, due to the perturbations of x1 and x2 , are d1

and d2 respectively, so that:

d1 = �×
∣∣∣∣∂f(x)

∂x1

∣∣∣∣
/√(

∂f(x)
∂x1

)2

+
(

∂f(x)
∂x2

)2

(9)

d2 = �×
∣∣∣∣∂f(x)

∂x2

∣∣∣∣
/√(

∂f(x)
∂x1

)2

+
(

∂f(x)
∂x2

)2

(10)

where x = [x1, x2]T and f(x) = x · w + b. f(x) = 0 is the discriminative
hyper-plane.

Eq. (9) and (10) indicate that the displacement of the hyper-plane is only
related to the partial derivative of the discriminative function, if the same per-
turbation is given to different features. Accordingly, we give our definition of
sensitivity of each feature.
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(a)

(b) (c)

Fig. 2. An example illustrating the impacts of feature perturbations on the decision

boundary (a) A linearly non-separable dataset and the decision boundary generated

by SVMs (b) with perturbation � in x1 (c) with perturbation � in x2

Definition 1. The sensitivity of feature xi for a linear SVM is

S(i) =
∣∣∣∣∂f(x)

∂xi

∣∣∣∣ (11)

where f(x) =
∑N

j=1 αjyjx
T
j x + b, and ∂f(x)

∂xi =
∑N

j=1 αjyjx
i
j.

Non-linear support vector machine maps the originally lineally non-separable
data points to a high-dimensional kernel space, where the patterns become lin-
early separable. We are aiming at reducing the dimension of input space instead
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of that of kernel space. A linear discriminative boundary in the kernel space cor-
responds to a non-linear discriminative boundary in the input space. We consider
the average dis-placement of f(x), due to the feature perturbation, in a narrow
region around the discriminative boundary as the sensitivity of the feature, be-
cause the partial derivatives on the points far away from the discriminative plane
contribute little to the deviation of discriminative plane. To formalize this, we
define the sensitivity S(i) of feature xi as the integration of the absolute value
of the partial derivative of f(x) with respect to input feature xi within region
Nε (assume the pdf of x is p(x) ):

Definition 2. The sensitivity of feature xi for a nonlinear SVM is

S(i) =
∫

Nε

∣∣∣∣∂f(x)
∂xi

∣∣∣∣ p(x)dx (12)

where Nε = {x| − ε < f(x) < ε},in which ε is a small number.

Since it is difficult to estimate p(x) , to approximate the above sensitivity,
we only consider the support vectors on or within the two margin bounds |f(x)|
= ±1:

S(i) =
∑

−1≤f(xj)≤1

∣∣∣∣∂f(x)
∂xi

∣∣∣∣
x=xj

(13)

Without loss of generalization, we suppose the Langrange multipliers remain
the same if the perturbation of given feature is small. Hence, for nonlinear SVMs,

f(x) =
N∑

j=1

αjyjK(xj ,x) + b,

and
∂f(x)
∂xi

=
N∑

j=1

αjyj
∂K(xj ,x)

∂xi

The kernel derivatives for the commonly used kernel functions can be found
in Table 1.

3.2 Feature Selection via Sensitivity Analysis and Refinement
(FSSAR)

Sensitivity measurement is able to reflect the significance of a feature on the
classification result. Intuitively, features with high sensitivities are preferred.
However, selecting features only based on their sensitivity rankings may not
lead to a subset of features that is most informative, due to the possible depen-
dencies among them. Note that the quality of the selected feature subset can
be measured by the R2W 2 error bounds [6,7] in using these features to train
SVM. The motivation of our FSSAR algorithm is to select the features that can
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Table 1. Typical kernel functions and their derivatives

Kernel Type Kernel Function K(xj , x) Kernel Derivative
K(xj ,x)

xj

RBF kernel exp
(−‖xj−x‖2

2δ2

)
1
δ2 (xi

j − xi)K(xj ,x)

Polynomial kernel ((xj · x) + 1)d d ((xj · x) + 1)d−1 · xi
j

Sigmoid kernel tanh (γxj · x + θ) γ

cosh2(γxj ·x)
· xi

j

generate the minimum R2W 2 error bounds. And our strategy is first to select
the features with higher sensitivities but at the same time keep the remaining
ones, and then refine the selected subset by tentatively substituting some part
with fragments of the previously rejected features. Obviously, the R2W 2 error
bounds of the selected feature subset in training SVM monotonously decrease
in this algorithm.

Given a desired number of features m, our FSSAR algorithm selects the m
features according to two steps. The process is illustrated in Fig. 3.

The first step is for initial partition. We train SVMs with all the features
and get a ranking of their sensitivities. Based on this ranking, the features are
divided into two lists, i.e. the selected list M(|M | = m) and the remaining list
N(|N | = d − m). Then we split list N into n fragments, each containing δ
elements.

The second step is refinement. We tentatively and separately substitute the
last δ features in M with each fragment in N , and record the R2W 2 error
bounds E(M i) after each substitution, where M i is the list M with the last
δ elements substituted by the ith fragment of N . Compare min

(
E(M i)

)
with

E(M) to see if any one of these substitutions reduces the R2W 2 error bound. If
min
(
E(M i)

)
< E(M), we update M with M∗ that corresponds to min

(
E(M i)

)
,

train SVMs with the updated M , and re-rank features in M by their sensitivities.
Then the next round of refinement starts. If we can not find any improvement in

Fig. 3. The process of FSSAR
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terms of R2W 2 error bound after these substitutions, the algorithm terminates
and returns the current best feature subset M . The pseudocode of FSSAR is
presented as follows.

FSSAR Algorithm.
Input: whole set of features S(|S| = d), desired number of features m, fragment
size δ
Output: selected feature subset M
Step1 (Initial partition):

Train SVM with S and rank S by sensitivities;
Split S into two sorted lists: selected feature list M and remaining list N ,
where |M | = m, |N | = d − m;
Divide N into n fragments each with size δ,

Ni =
{
{N [(i − 1) × δ + 1], N [(i − 1) × δ + 2], . . . , N [i × δ]}, for i = 1 ∼ n − 1
{N [d − m − δ + 1], . . . , N [d − m]}, for i = n

Calculate the R2W 2 error bound E(M);
Step2 (Refinement):

Exchange the last δ elements in M and Ni and get M i,

M i = {M(1), M(2), . . . , M(m − δ)} ∪ Ni

Ni = {M(m − δ + 1), M(m − δ + 2), . . . , M(m)}

Train SVM with M i, and calculate R2W 2 error bound E(M i);
Let E(M∗) = min

(
E(M i)

)
(i = 1, 2, . . . , n);

If E(M∗) < E(M)
M = M∗;E(M) = E(M∗);
Train SVM with M , and sort the features in M by their sensitivity values;
Go to the beginning of step2;

Else
stop and return the selected feature subset M .

4 Experiments and Results

We test the FSSAR algorithm on two microarray datasets, namely colon cancer
dataset [8] and lymphoma dataset [9], and compare its performance with other
three feature selection algorithms, i.e. correlation coefficients feature selection
algorithm [8], SVM-RFE method [4], and the feature weighting method based
on the R2W 2 error bound [3].

In the colon cancer dataset, 62 expression profiles probed by oligonucleotide
arrays contain 40 tumor and 22 control profiles that must be discriminated based
upon the expression of 2000 genes. We randomly split the profiles into a training
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set of 50 samples and a testing set of 12 samples. And the proportions of tumor
and control profiles are similar in both training and testing sets.

In the lymphoma dataset, the goal is to separate cancerous and control tissues
in a large B-Cell lymphoma problem. The dataset contains 96 expression profiles
concerning 4026 genes, where 62 cancerous samples are in any of the classes
DLCL, FL and CLL, and the remaining 34 are labeled as control. The dataset
was randomly split into a training set of size 60 and a testing set of size 36 with
similar proportions of cancerous and control profiles.

We run each of the four algorithms independently for 100 times and use the
statistical results to reflect their overall performances. In each run of a specific
algorithm, we use the training and testing sets generated by independently ran-
domly splitting the raw datasets. We perform our FSSAR algorithm and other
three algorithms to select 20, 50, 100, 250, and 1000 features from the above two
datasets. The fragment size δ in FSSAR is set to 0.1×m, and the regularization
parameter C for the linear SVM is set to 1000. Test accuracies are listed in
Table 2. From the results, one can find that FSSAR generally achieves higher
accuracies with lower standard deviations than other three methods.

Table 2. Means and standard deviations of the test accuracies of correlation coefficient

(CC) feature selection algorithm, feature weighting method based on the R2W 2 bound,

SVM-RFE method, and FSSAR

Dataset # of genes CC(%) R2W 2(%) SVM-RFE(%) FSSAR(%)

20 78.2 ± 10 79.3 ± 14 81.8 ± 9 84.1 ± 5

50 77.8 ± 11 81.6 ± 11 83.7 ± 9 86.9 ± 3

Colon Cancer 100 79.4 ± 11 83.2 ± 10 84.2 ± 10 86.3 ± 4

250 82.3 ± 9 84.1 ± 9 83.1 ± 9 86.5 ± 5

1000 83.3 ± 9 82.8 ± 8 83.4 ± 9 85.8 ± 4

20 78.6 ± 10 87.5 ± 7 91.7 ± 4 95.2 ± 3

50 86.6 ± 6 91.2 ± 5 93.1 ± 5 95.7 ± 2

Lymphoma 100 90.5 ± 5 92.1 ± 4 93.5 ± 5 94.8 ± 2

250 92.4 ± 5 92.4 ± 4 92.9 ± 4 94.5 ± 3

1000 93.0 ± 5 91.9 ± 4 92.2 ± 4 94.3 ± 3

To test the performance of the proposed FSSAR algorithm in nonlinear prob-
lems, we synthesized an XOR problem with 52 features akin to [3]. Only the first
two features are relevant to the toy problem. The probabilities of classes y = +1
and y = −1 are equal. If y = −1, the first two features x1, x2 are drawn from
N
(
(−0.8,−3)T , I

)
, or N

(
(0.8, 3)T , I

)
from with equal probability. If y = +1,

x1, x2 are drawn with equal probability from N
(
(3,−3)T , I

)
or N

(
(−3, 3)T , I

)
.

The remaining features are randomly drawn from N(0, 20).
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Fig. 4. Comparison of feature selection methods on a synthetic nonlinear problem

with many irrelevant features

For the four feature selection methods in comparison, we selected the best
two features. We chose a RBF kernel of width δ = 0.1 and parameter
C = 100 for the nonlinear SVM. Fig. 4 shows the performance of SVMs without
feature selection, the correlation coefficients feature selection method, the feature
weighting method based on the R2W 2 error bound, SVM-RFE method and our
FSSAR algorithm. The performance is measured in terms of the averaged test
errors on the 400 independent test points over 30 runs for each training set. Due
to the relatively small number of given features, the fragment size δ in FSSAR is
fixed to 1. One can find that our FSSAR algorithm achieves lower testing error
rate than other four methods on training sets with 10 to 100 samples.

We consider the number of SVM training as the measurement of the time
complexity, because SVM training is the most time-consuming part in this al-
gorithm. FSSAR trains SVM for only once in the initialization part, and for
h · (n + 1) times in the refinement part, where h is the number of refinements
before FSSAR converges, and n is the number of fragments in the remaining list
N . Generally, we have n � d. Actually, in our experiments, h is less than 10.
Therefore, the total running time of FSSAR is moderate.

5 Conclusion

A new feature selection method for SVMs via sensitivity analysis and refinement
is proposed in this paper. The sensitivity values can reflect the significances
of the features, but only considering sensitivities would be too greedy. This
potential weakness is compensated by refining the selected features using the
previously rejected features. To evaluate the quality of current subset of features,
we use the theoretical bounds on the generalization error for SVMs, which is
computationally attractive.
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The FSSAR algorithm is compared with other three feature selection algo-
rithms, i.e. correlation coefficients feature selection algorithm, SVM-RFE
method, and the feature weighting method based on the R2W 2 error bound.
The experiments are performed on two microarray datasets, i.e. colon cancer
and lymphoma, as well as a synthetic dataset. From these experiments, one can
conclude that once given the desired number of features the FSSAR algorithm
results in the feature subset with competitive quality.
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Abstract. The gene assembly process in ciliates (single-cell organisms)
is interesting from both the biological and computational point of view.
This paper studies the computational nature of the gene assembly pro-
cess. Motivated by the breakpoint graph known from another branch
of DNA transformation research, we introduce the reduction graph as a
tool for the study of this process, and illustrate its usefulness by proving
a number of properties of gene assembly.

1 Introduction

Ciliates are single-cell organisms that have two functionally different nuclei, one
called micronucleus and the other called macronucleus. At some stage in sexual
reproduction a micronucleus is transformed into a macronucleus in a process
called gene assembly. This is the most involved DNA processing in living or-
ganisms known today. The reason that gene assembly is so involved is that the
genome of the micronucleus is dramatically different from the genome of the
macronucleus — this difference is particularly pronounced in the stichotrichs
group of ciliates which we consider in this paper. The investigation of gene as-
sembly [4] turns out to be very exciting from both biological and computational
points of view.

Another branch of DNA transformation research is sorting by reversal, see,
e.g., [6] and [7]. Two different species can have several contiguous segments on
their genome that are very similar, although there relative order (and orienta-
tion) may differ on both genomes. In the theory of sorting by reversal one tries to
determine the number of operations needed to reorder such a series of genomic
‘blocks’ from one species into that of another. The theory is still being refined [1].
An essential tool is the breakpoint graph (or reality and desire diagram) which is
used to capture both the present situation, the genome of the first species, and
the desired situation, the genome of the second species.

Motivated by the breakpoint graph, we introduce the reduction graph into the
theory of gene assembly. The intuition of ‘reality and desire’ remains in place,

� This research was supported by the Netherlands Organization for Scientific Research
(NWO) project 635.100.006 “VIEWS”.
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but the technical details are different. Instead of one operation, the reversal,
we have three operations as described in [9]. Furthermore, these operations are
irreversible and can only be applied on special positions in the string, called
pointers. Also, instead of two different species, we deal with two different nuclei
— the present situation is a gene in its micronuclear form, and the desired
situation is the gene in its macronuclear form. Surprisingly, where the breakpoint
graph in the theory of sorting by reversal is mostly useful to determine the
number of needed operations, the reduction graph has different uses in the theory
of gene assembly, providing valuable insights into the gene assembly process.

For example, the reduction graph allows for a direct characterization of the
intermediate strings that may be constructed during the transformation of a
given gene from its micronuclear form to its macronuclear form. Also, it allows
one to determine the number of loop recombination operations (see Figure 1 be-
low) needed in this transformation. These results may be experimentally verified
to allow for a validation of the model. Due to space constraints, the proofs of
the theorems are omitted.

2 Background: Gene Assembly in Ciliates

In ciliates, genes can occur in two forms: in their micronuclear and in their
macronuclear form. A gene in its micronuclear form consists of relevant genetic
segments called MDSs (macronuclear destined sequences) separated by IESs (in-
ternally eliminated sequences). During sexual reproduction, a micronucleus is
converted into a macronucleus. The genes are converted to their macronuclear
form by excising the IESs and by splicing, permutating, and possibly inverting
the MDSs. This process is referred to as gene assembly [4].

M̄3 M5M̄1M2M4

Above is an example gene in its micronuclear form with five MDSs
M1, . . . , M5, where M̄i denotes the inverse of Mi (Mi rotated by 180 degrees).
This form can be described by the string M̄3M4M2M̄1M5. After gene assembly
the string M1M2 · · ·M5 is obtained (without the intermediate IESs).

In general, the structure of MDS Mi for 1 < i < κ, M1 and Mκ can be
depicted as:

p̄i

pi
ui

p̄i+1

pi+1

,
u1

p̄2

p2

, and p̄κ

pκ
uκ

,

respectively. The symbols pi and p̄i for 2 ≤ i ≤ κ represent single stranded DNA
sequences, and ui for 2 ≤ i ≤ κ represent double stranded DNA sequences. DNA
sequence p̄i is the Watson-Crick complement of DNA sequence pi. Each double

strand
pi

p̄i
is called a pointer, and is considered part of both Mi−1 and Mi. In

the macronucleus, the MDSs M1, M2, . . . , Mκ are spliced together by “gluing”
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each Mj with Mj+1 on
pj+1

p̄j+1
(for 1 ≤ j < κ). This gluing is irreversible (in the

gene assembly process) and thus after gluing Mj with Mj+1, the occurrences

of
pj+1

p̄j+1
in Mj and Mj+1 are not considered pointers anymore. Consequently,

the molecular operations can be seen as operations that remove pointers. This
is an important property of gene assembly and appears explicitly in the formal
models of the gene assembly process. The gene assembly process is accomplished
through the following three molecular operations.

y

p

p̄

p

p̄

x z

y

z

p̄

p

p

p̄

x

y

z
p

p̄

x
p

p̄

Fig. 1. The loop recombination operation

p

p

p̄

p̄
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p
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p
x

z
p

p̄

p̄

p̄

p̄

y

ȳ

Fig. 2. The hairpin recombination operation

Loop recombination. This operation is applicable to a gene pattern which has
two identical pointers separated by a single IES y. An application results in
the excitation from the genome of a circular molecule consisting of IES y
only (Figure 1).

Hairpin recombination. The operation is applicable to a gene pattern con-
taining a pair of pointers in which one pointer is an inversion of the other.
An application results in the inversion of the sequence of the genome that is
between the mentioned pair of pointers (Figure 2).

Double-loop recombination. The operation is applicable to a gene pattern
containing two pairs of identical pointers for which the sequence between the
first pair of pointers overlaps with the sequence between the second pair of
pointers. An application results in the interchanging of the sequence between
the first two (of the four) pointers and the sequence between the last two
pointers in the gene pattern (Figure 3).

For a given gene in its micronuclear form, a sequence of these molecular opera-
tions is successful if it transforms the pattern into its macronuclear form.



The Breakpoint Graph in Ciliates 131

q

q

y

u

x
p

p

z

w

q̄

q̄

p̄

p̄
p

p

z

x

w

y

u

p̄

p̄ p̄

x
p

q

p̄

p

q̄

u

y

z

q

q
w q̄

q
q̄

q̄

Fig. 3. The double-loop recombination operation

3 The String Pointer Reduction System

Motivated by the molecular operations discussed in Section 2, three equivalent
types of formal systems were considered in [3] and [4]. They are believed to be
sound models of the gene assembly process. In this paper we consider the string
pointer reduction system, which we will recall now.

We define the alphabet Δ = {2, 3, . . . , κ}. For D ⊆ Δ, we define D̄ = {ā | a ∈
D} and ΠD = D∪ D̄; also Π = ΠΔ. We will use the the alphabet Π to formally

denote the pointers — the intuition is that the pointer
pi

p̄i
will be denoted by

either i or ī. Accordingly, elements of Π will also be called pointers.
We use the “bar operator” to move from Δ to Δ̄ and back from Δ̄ to Δ.

Hence, for p ∈ Π , ¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π , the inverse of
u is the string ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π , we define p = p if p ∈ Δ and p = p̄
if p ∈ Δ̄, i.e., p is the “unbarred” variant of p. The domain of a string v ∈ Π∗

is dom(v) = {p ∈ Δ | p or p̄ occurs in v}. A legal string is a string u ∈ Π∗ such
that for each p ∈ Π that occurs in u, u contains exactly two occurrences from
{p, p̄}. For a pointer p and a legal string u, if both p and p̄ occur in u then we
say that both p and p̄ are positive in u; if on the other hand only p or only p̄
occur in u, then both p and p̄ are negative in u. So, every pointer occurring in a
legal string is either positive or negative in it.

For each gene in its micronuclear form, we associate a legal string through
the homomorphism πκ defined by:

πκ(M1) = 2, πκ(Mκ) = κ, πκ(Mi) = i(i + 1) for 1 < i < κ,

and πκ(M̄j) = πκ(Mj) for 1 ≤ j ≤ κ.

Example 1. The gene in its micronuclear form in Section 2 described by
M̄3M4M2M̄1M5 corresponds to legal string u = 4̄3̄45232̄5. Pointers 2, 3 and
4 (and their inverses) are positive in u, and pointers 5 and 5̄ are negative in u.

Example 2. The gene (in its micronuclear form) that encodes the actin protein in
the stichotrich Sterkiella nova is described by δ = M3M4M6M5M7M9M̄2M1M8

(see [8], [2], and [4]). The associated legal string is π9(δ) = 344567567893̄2̄289.
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The string pointer reduction system (SPRS for short) consists of three types of
reduction rules operating on legal strings. For all p, q ∈ Π :

– the string negative rule for p is defined by snrp(u1ppu2) = u1u2.
– the string positive rule for p is defined by sprp(u1pu2p̄u3) = u1ū2u3.
– the string double rule for p, q is defined by

sdrp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5.

where u1, u2, . . . , u5 are arbitrary strings over Π . We define Snr =
{snrp | p ∈ Π}, Spr = {sprp | p ∈ Π} and Sdr = {sdrp,q | p, q ∈ Π} to
be the sets containing all the reduction rules of a specific type.

Note that each of these rules is defined only on legal strings that satisfy the
given form. For example, snr2 is not defined on legal string 2323. It is important
to realize that for every non-empty legal string there is at least one reduction
rule applicable. Indeed, every legal string for which no string positive rule and
no string double rule is applicable must have only negative pointers and no
overlapping pointers and thus a string negative rule is applicable.

The string negative (positive, double, resp.) rule corresponds to the loop
(hairpin, double-loop, resp.) recombination operation. Note that the fact
(pointed out at the end of Section 2) that the molecular operations remove point-
ers is explicit in SPRS. Each of the three molecular operations from Section 2
has its own (biological) complexity. Thus, in order to characterize the complex-
ity of the gene assembly process in various strands of ciliates, we may restrict
ourselves to subsets of the rules, and consider rules from, e.g., {Snr, Spr}, i.e.,
without the string double rules.

Definition 1. Let u and v be legal strings and S ⊆ {Snr, Spr, Sdr}. A composi-
tion ϕ of reduction rules from S is called an (S-)reduction of u, if ϕ is applicable
to (defined on) u. A successful reduction ϕ of u is a reduction of u such that
ϕ(u) = λ (λ denotes the empty string). We then also say that ϕ is successful
for u. We say that u is reducible to v in S if there is a S-reduction ϕ of u such
that ϕ(u) = v. We simply say that u is reducible to v if u is reducible to v in
{Snr, Spr, Sdr}. We say that u is successful in S if u is reducible to λ in S.

Because (as pointed out already) for every non-empty legal string there is at
least one reduction rule applicable, we easily obtain Theorem 9.1 in [4] which
states that every legal string is successful in {Snr, Spr, Sdr}.

Example 3. Let S = {Snr, Spr}, u = 32454̄53̄2̄, and v = 5̄45̄4̄. Then u is re-
ducible to v in S, because (snr3 spr2)(u) = v. Applying ϕ = spr5̄ spr4 snr2̄ spr3

to u yields λ, thus ϕ is successful for u. On the other hand, u = 3232 is not re-
ducible to any v in S, because none of the rules in Snr and none of the rules in
Spr is applicable for this u.

4 Reduction Graphs

We are ready now to define the main notion of this paper: the reduction graph.
The reduction graph is a two-sorted graph and it is defined for a legal string u
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and a subset D ⊆ dom(u). A two-sorted graph is a graph G = (V, E1, E2, f, l, s, t)
that has two separate sets of edges E1 and E2, two special vertices s and t, every
vertex (except s and t) is labelled through labelling function f , and every edge
is labelled through labelling function l.

Isomorphism between two-sorted graphs is defined in the usual way. Two-
sorted graphs G = (V, E1, E2, f, l, s, t) and G′ = (V ′, E′

1, E
′
2, f

′, l′, s′, t′) are iso-
morphic, denoted by G ≈ G′, if there is a bijection α : V → V ′ such that
α(s) = s′, α(t) = t′, f(v) = f ′(α(v)) for all v ∈ V , l((x, y)) = l′((α(x), α(y))),
and (x, y) ∈ Ei iff (α(x), α(y)) ∈ E′

i, for all x, y ∈ V and i ∈ {1, 2}.

42 3 2̄ 4̄ 3

Fig. 4. Part of a genome with three pointer pairs corresponding to the same gene

2•• • • •• • • •• • •

� �� �
�� ���� ��

ts 434̄2̄3

Fig. 5. The reduction graph corresponding to the underlying genome

The intuition behind the reduction graph is as follows. Figure 4 depicts a
part of a genome with three pointer pairs corresponding to the same gene g.
The reduction graph (of g with respect to these pointer pairs) introduces two
vertices for each of these pointers and two special vertices s and t representing the
ends. It connects adjacent pointers through reality edges and connects pointers
corresponding to the same pointer pair through desire edges in a way that reflects
how the parts will be glued after a molecular operation is applied on that pointer
(recall Figures 1, 2, and 3). The resulting reduction graph is depicted in Figure 5.
Thus, every reality edge corresponds to a certain DNA segment. If such a DNA
segment contains other pointers of g, then these pointers form the label of that
reality edge. The formal definition is given below.

Definition 2. Let D ⊆ Δ and let u be a legal string, such that u = δ0p1δ1p2 . . .
pnδn where δ0, . . . , δn ∈ Π∗

D and p1, . . . , pn ∈ Πdom(u)\D. The reduction graph
of u with respect to D is a two-sorted graph

Gu,D = (V, E1, E2, f, l, s, t)

where

V = {I1, I2, . . . , In} ∪ {I ′1, I ′2, . . . , I ′n} ∪ {s, t} are the vertices,
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E1 = E1,r ∪ E1,l are the reality edges, where E1,r = {e0, e1, . . . , en} with

ei = (I ′i , Ii+1) for 1 ≤ i ≤ n − 1, e0 = (s, I1), en = (I ′n, t),

E1,l = {ē | e ∈ E1,r},where for e = (x, y), we define ē = (y, x),

E2 = {(I ′i, Ij), (Ii, I
′
j) | i, j ∈ {1, 2, . . . , n} with i �= j and pi = pj} ∪

{(Ii, Ij), (I ′i, I
′
j) | i, j ∈ {1, 2, . . . , n} and pi = p̄j} are the desire edges,

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n is the vertex labelling function, and

l(ei) = δi, l(ēi) = δ̄i for 0 ≤ i ≤ n and l(e) = λ for e ∈ E2 is the edge labelling
function.

When D = ∅, we simply refer to Gu,D as the reduction graph of u. The following
example should make the notion of reduction graph more clear.

I1

δ̄0
��

I ′
1

δ1 ��
I2

δ̄1

�� I ′
2

δ2 ��
I3

δ̄2

�� I ′
3

δ3 ��
I4

δ̄3

�� I ′
4

δ4 ��
I5

δ̄4

�� I ′
5

δ5 ��
I6

δ̄5

�� I ′
6

δ6
��

s

δ0

��

t

δ̄6

��

Fig. 6. The reduction graph Gu,D as defined in Example 4 (the vertex labels are

omitted)

Example 4. Let u = 5236882̄54̄377̄46 be a legal string and D = {5, 6, 7, 8} ⊆
dom(u). Thus, {2, 3, 4} = dom(u)\D, and u = δ0 2 δ1 3 δ2 2̄ δ3 4̄ δ4 3 δ5 4 δ6

with δ0 = 5, δ1 = λ, δ2 = 688, δ3 = 5, δ4 = λ, δ5 = 77̄ and δ6 = 6. Notice that
δ1, δ2, . . . , δ6 ∈ Π∗

D. This example corresponds to the situation in Figure 4.
The reduction graph Gu,D of u with respect to D is given in Figure 6. Note

that for every desire edge e, we represent both e and ē by a single undirected
edge. The graph is drawn in a form that closely relates to the linear ordering
of u. The desire edges that cross correspond to positive pointers, and the desire
edges that do not cross correspond to negative pointers.

Since the exact identity of the vertices in a reduction graph is not essential
for the problems considered in this paper, in order to simplify the pictorial
notation of reduction graphs we will replace the vertices (except for s and t) by
their labels. Figure 7 gives Gu,D in this way. In this figure we have reordered the
vertices, making it transparent that Gu,D has one linear and one cyclic connected
component.
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��
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Fig. 7. The reduction graph of Figure 6 in a simplified form

Note that a reduction graph is an undirected graph in the sense that if
e ∈ E1 (e ∈ E2, resp.) then also ē ∈ E1 (ē ∈ E2, resp.). If we think of the
reduction graph as an undirected graph by considering edges (x, y) and (y, x) as
one undirected edge {x, y}, then every vertex (except for s and t) is connected
to exactly two (undirected) edges. Thus the reduction graph has exactly one
connected component that has a linear structure with s and t as endpoints and
possibly one or more connected components that have a cyclic structure (called
cyclic components).

A walk in a two-sorted graph G is a string π = e1e2 · · · en over E = E1 ∪ E2

with n ≥ 1 such that there are vertices x1, . . . , xn+1 such that ei = (xi, xi+1)
for 1 ≤ i ≤ n. We say that π is alternating if moreover for all 1 ≤ i < n, ei

and ei+1 are not both in E1 and not both in E2. The label of π is the string
l(π) = l(e1)l(e2) · · · l(en). If a two-sorted graph G has a unique alternating walk
from s to t, then the label this walk is called the reduct of G, denoted by red(G).
Thus, the reduct exists for a reduction graph Gu,D of a legal string u with
respect to a D ⊆ dom(u). It is then also called the reduct of u to D, and denoted
by red(u, D). A direct consequence of the definition of reduction graph is that
red(u, dom(u)) = u for each legal string u. It is also clear that if two-sorted
graphs G1 and G2 are isomorphic, then red(G1) = red(G2).

Example 5. If we take u and D from Example 4, then red(u, D) = 58̄8̄6̄6, which
is easy to see in Figure 7.

We now define functions on reduction graphs, called reduction functions, that
simulate the effect (up to isomorphism) of each of the three string pointer reduc-
tion rules on a reduction graph. For a vertex label p, the p-reduction function,
denoted by rfp, merges edges that form an alternating walk ‘over’ vertices la-
belled by p, concatenating their labels, and removes all vertices labelled by p.

Example 6. If we take Gu,D from Example 4, then rf2(Gu,D) is given in Figure 8.
Consider, e.g., the edges (s, I1), (I1, I3), and (I3, I

′
2) of Gu,D labelled by 5, λ,

and 8̄8̄6̄, respectively. Since they form a walk ‘over’ vertices labelled by 2, in
rf2(Gu,D) they are replaced by a single edge (s, I ′2) labelled by 58̄8̄6̄.
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Fig. 8. The graph obtained when applying rf2 to the reduction graph of Figure 7

It is easy to see that reduction functions do not affect the reduct: for each
reduction graph Gu,D and all p ∈ dom(u)\D, red(Gu,D) = red(rfp(Gu,D)).
Reduction functions satisfy also another important property. The theorem states
that the reduction functions simulate the effect (up to isomorphism) of each of
the three string pointer reduction rules on a reduction graph.

Theorem 1. Let u be a legal string, D ⊂ dom(u) and p, q ∈ Π with p,q ∈
dom(u)\D. Let Gu,D be the reduction graph of u with respect to D.

– If snrp is applicable to u, then rfp(Gu,D) ≈ Gsnrp(u),D.
– If sprp is applicable to u, then rfp(Gu,D) ≈ Gsprp(u),D.
– If sdrp,q is applicable to u, then rfq(rfp(Gu,D)) ≈ Gsdrp,q(u),D.

Example 7. If we again take u = 5236882̄54̄377̄46 and D = {5, 6, 7, 8} ⊆ dom(u)
from Example 4, then spr2(u) = 58̄8̄6̄3̄54̄377̄46. By constructing the reduction
graph Gspr2(u),D of spr2(u) with respect to D, one may verify that Gspr2(u),D is
isomorphic to rf2(Gu,D). Thus, omitting the identity of the vertices of Gspr2(u),D

as usual, we again obtain the graph of Figure 8 (depicting rf2(Gu,D)).

Let oper be one of the SPRS rules, applicable to u and using pointers not
in D, as in the above theorem. By the theorem, we can construct the reduction
graph Goper(u),D of oper(u) with respect to D from Gu,D by applying one or
two reduction functions. As these do not change the reduct, we have red(u, D) =
red(oper(u), D). By applying this argument iteratively, we see that if legal string
u is reducible to legal string v, then red(u, dom(v)) = red(v, dom(v)) = v. We
will strengthen this statement in the next section.

5 Properties of the Reduction Graph

In the section we show that a number of interesting properties can be proven
using the reduction graph. From a biological point of view, Theorem 2 char-
acterizes which gene patterns can occur during the transformation of a given
gene from its micronuclear form to its macronuclear form using only a specific
subset of the three types of recombination operations. Theorem 3 allows one to
determine the number of loop recombination operations that are necessary in
this transformation.
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We first define the notion of pointer removal operations. For a subset D ⊆ Δ,
the D-removal operation, denoted by remD, is the homomorphism defined by
remD(a) = λ if a ∈ D ∪ D̄ and remD(a) = a if a �∈ D ∪ D̄.

Example 8. Let u = 32454̄53̄2̄ and D = {4, 5}. Then remD(u) = 323̄2̄. Note that
2, 3 �∈ D. Note also that ϕ = snr3 spr2 is applicable to both u and remD(u),
but for remD(u), ϕ is also successful.

The next theorem gives a characterization of reducibility given a chosen set
of reduction rules S ⊆ {Snr, Spr, Sdr}.
Theorem 2. Let u and v be legal strings, D = dom(v) ⊆ dom(u) and S ⊆
{Snr, Spr, Sdr}. Then u is reducible to v in S iff remD(u) is successful in S
and red(u, D) = v.

The following corollary follows directly from the previous theorem and the
fact that every legal string is successful in {Snr, Spr, Sdr}. The corollary implies
that it takes only linear time O(|u|) to determine whether or not u is reducible
to v.

Corollary 1. Let u and v be legal strings and D = dom(v) ⊆ dom(u). Then u
is reducible to v iff red(u, D) = v.

Example 9. Consider again legal string u and D = {5, 6, 7, 8} from Example 4.
By Example 5, red(u, D) = 58̄8̄6̄6. By the previous corollary, there is no reduc-
tion ϕ of u that removes exactly the pointers from D, because there is no legal
string v such that v = red(u, D) and dom(v) = D.

It turns out that the cyclic components in the ‘full’ reduction graph Gu,∅ of a
legal string u reveals important properties of u. For example, if snrp is applicable
to u, then u = u1ppu2 for some strings u1 and u2. Therefore, Gu,∅ contains the
following cyclic component.

p
λ

�� p
λ

		

Now, Gsnrp(u),∅ ≈ rfp(Gu,∅), thus this (and only this) cyclic component is
removed by rfp. It turns out that in the spr and sdr cases, no cyclic components
are removed, and consequently the following theorem holds.

Theorem 3. Let N be the number of cyclic components in the reduction graph
of a legal string u. Then every successful reduction of u has exactly N string
negative rules.

Example 10. Let u = 232̄4̄34 be a legal string. The reduction graph of u is
depicted in Figure 7, but with all reality edges labelled by λ. By Theorem 3
it follows that every reduction of u has exactly one string negative rule. It
can be shown that there are exactly four successful reductions of u. These are
snr2 spr3 spr4̄, snr3̄ spr2 spr4̄, snr3̄ spr4̄ spr2 and snr4 spr3̄ spr2. Notice
that each of these reductions has exactly one string negative rule.
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Example 11. By constructing the reduction graph Gu,∅ of legal string
u = 344567567893̄2̄289 corresponding to the actin gene of Sterkiella nova, it
follows that Gu,∅ has two cyclic components. Thus exactly two string negative
rules are present in every successful reduction ϕ of u. One such reduction is
ϕ = spr3 sdr8,9 snr7 sdr5,6 spr2̄ snr4. Therefore, the transformation of the
actin gene from its micronuclear form to its macronuclear form requires exactly
two loop recombination operations (Figure 1).

The previous theorem implies that it takes only linear time O(|u|) to de-
termine how many string negative rules are needed to successfully reduce legal
string u. The theorem also allows for a generalization of a number of results in
[5] (and Chapter 13 in [4]) concerning the characterization of successfulness. For
example, since every legal string u is successful in {Snr, Spr, Sdr}, the following
holds.

Corollary 2. Let u be a legal string. Then u is successful in {Spr, Sdr} iff the
reduction graph of u has no cyclic component.

It is easy to see that for legal string u and D ⊆ dom(u), GremD(u),∅ is
isomorphic to Gu,D modulo the labels of the edges. Then, by Theorem 2 and
Corollary 2, we have the following corollary. In this result it is particularly ap-
parent that both the linear component and the cyclic components of reduction
graphs reveal crucial properties concerning reducibility.

Corollary 3. Let u and v be legal strings with dom(v) ⊆ dom(u), and Gu,D be
the reduction graph of u with respect to D = dom(v). Then u is reducible to v
in {Spr, Sdr} iff Gu,D has no cyclic components and red(Gu,D) = v.

6 Conclusion

This paper introduces the concept of breakpoint graph (or reality and desire
diagram) into gene assembly models, through the notion of reduction graph.
The reduction graph provides valuable insight into the gene assembly process,
because for example it allows one to characterize which gene patterns can oc-
cur during the transformation of a given gene from its micronuclear form to its
macronuclear form. Formally, in the string pointer reduction system we char-
acterize whether legal string u is reducible to legal string v for a given set of
reduction rule types. The characterization is independent from the chosen subset
of the three types of string pointer rules, and it allows us to determine whether
a legal string u is reducible to a legal string v in linear time O(|u|). In addition,
it allows one to determine the number of loop recombination operations that are
necessary in the transformation of a given gene from its micronuclear form to its
macronuclear form.
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Abstract. Protein expression profiling is a multidisciplinary research
field which promises success for early cancer detection and monitoring of
this widespread disease. The surface enhanced laser desorption and ion-
ization (SELDI) is a mass spectrometry method and one of two widely
used techniques for protein biomarker discovery in cancer research. There
are several algorithms for signal detection in mass spectra but they are
known to have poor specificity and sensitivity. Scientists have to review
the analyzed mass spectra manually which is time consuming and er-
ror prone. Therefore, algorithms with improved specificity are urgently
needed. We aimed to develop a peak detection method with much better
specificity than the standard methods.
The proposed peak algorithm is divided into three steps: (1) data import
and preparation, (2) signal detection by using an Analysis of Variance
(ANOVA) and the required F-statistics, and (3) classification of the com-
puted peak cluster as significant based on the false discovery rate (FDR)
specified by the user.
The proposed method offers a significantly reduced preprocessing time
of SELDI spectra, especially for large studies.
The developed algorithms are implemented in R and available as open
source packages ProSpect , rsmooth, and ProSpectGUI . The software im-
plementation aims a high error tolerance and an easy handling for user
which are unfamiliar with the statistical software R. Furthermore, the
modular software design allows the simple extension and adaptation of
the available code basis in the further development of the software.

1 Introduction

Since gene expression analysis [11,15] and protein expression profiling [17] have
been introduced to cancer research, it seems possible to clarify the development
of this widespread disease. Scientists are using these methods to look for pat-
terns within the given data which are characteristic for case or control. These
patterns, called biomarkers, help to detect cancer in early stages and to monitor

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 140–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



ProSpect: An R Package for Analyzing SELDI Measurements 141

the development of cancer [10]. Especially, protein biomarkers promise success
for it because cancer is increasingly beginning recognized as a proteomic disease
[4,19].

The modern cancer research is a multidisciplinary field where (A) molecular
biologists/physicians (experiment design and data analysis), (B) computational
scientists (data handling and data processing), and (C) statisticians (data pro-
cessing and data analysis) work together to analyze large scale datasets, pro-
duced by genomic and proteomic techniques, to get reasonable results.

1.1 Techniques for Proteomic Biomarker Detection

Today, proteomic biomarker detection means the analysis of proteins and pep-
tides within a range of ca. 3 - 120 kDa. Currently, there is none technique which
is optimized for analyzing the whole range. Per default, the two-dimensional
gel electrophoresis (2-DE) [7,12] is used for analyzing molecules over 30 kDa
and the surface-enhanced laser desorption and ionization (SELDI) [6,5] is the
preferred method for analyzing the range below. In general, SELDI provides a
better solution than 2-DE and the possibility for automation. SELDI has been
used successfully to find biomarkers for ovarian cancer, prostate cancer and to
the most common method for proteomic characterization of breast cancer [19].
Especially, the possibility to analyze body fluids is a great advantage of this
method and makes it perfect to find the ideal biomarker [14].

1.2 Peak Detection in SELDI Mass Spectra

The ProteinChip technology developed by Ciphergen Biosystems (Fremont, CA,
USA) is based on SELDI and frequently used for detecting protein biomarkers.
The platform provides high throughput capabilities for mass screens with repro-
ducible results and the possibility to analyze tissue, cell lines, and different body
fluids like blood serum and urine [8,18,22].

In the analysis of mass spectra, it is a real challenge to determine whether
the peaks are due to real proteins or measurement noise. Existing peak detection
algorithms are known to have poor specificity [3] and sensitivity. They tend to
pick false peaks or fail to detect true peaks [6] in following situations: (1) baseline
level drift, (2) misspecification of the reference peak shape, and (3) low signal
to noise ratio of the peak of interest.

Scientists visually inspect the mass spectra and try to ascertain that the
most interesting peaks are replicated over several spectra. This approach offers
only limited reproducibility, is time consuming and error prone. Hence, algo-
rithms which improve the automated process and the specificity of the results
are urgently needed.

Currently available programs apply their peak detection algorithms to each
spectrum separately. This single spectrum approach is problematic to realize,
especially when the noise is of high frequency. Tan et al. developed a new peak
detection algorithm [20] which mimics the multi-spectral visual validation. The
algorithm improves the characterization of the background noise and avoids or
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at least minimizes the visual inspection by scientists. The statistical analysis is
based on a one-way ANOVA to study the variability of spectra. Therefore, the
spectra are cut into windows with a fixed number of paired observations from
each spectrum. From this framework, the F -statistic is used to identify regions
where the variance between spectra is significantly greater than the variability
within spectra.

2 Methods

The peak detection algorithm by Tan et al. [20] can be separated in three major
parts: (1) Data preparation, (2) calculation of the F-statistics, and (3) detection
of significant peaks (figure 1). Most nucleotide biomarkers are detected in a range
from 3 kDa to 10 kDa but generally, scientists analyze their spectra up to 150kDa
by default. Hence, the algorithm has not only to provide a high specificity and
sensitivity, it is also important to finish the calculations in acceptable time.

Fig. 1. Flow chart of the peak detection algorithm by Tan et al.

2.1 Data Preparation

Ciphergen’s software provides the export of experimental data as comma sepa-
rated values (CSV). The .csv files have to contain pairs of data points which are
separated into m/z and intensity values. In the next step, the data are stored
within an array, a multidimensional matrix. The first dimension is used to or-
der the data by their time of flight and the second dimension to order them by
spectrum.

In the next step, the data get reduced to the region of interest. That means
the region where the user is interested in to look for potential biomarkers. The
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reduction step is based on the alignment of all m/z values across the spectra.
The m/z values of each spectrum are located within the chosen range but the
corresponding TOF values are different. In addition, the amount of values within
each column differ in the most cases and the data array would be irregular and
not allowed by definition. Hence, the shifted columns and the different number
of values within each column have to be corrected to keep the array as a regular
rectangular block. There are two different types of reduction procedures: The
first possibility is to cut outer points and create a rectangular matrix of minimal
common values. The opposite is to add missing values and get a rectangular
matrix of maximal common points. Both procedures correct the shifting across
the spectra but not the shifting of values within the columns.

After the reduction step, the data are normalized. Often, it is more helpful
to compare the relative differences between data instead of their absolute differ-
ences. Normalizing the data means to transfer absolute differences which can be
measured into the relative differences. A widely used methodology is the loess
correction. This method calculates a smoothing curve corresponding to the min-
imum of sum of squares of all data pairs of a spectrum and has to be repeated for
each spectrum separately. Usually the loess correction is based on all available
data points. Within the range from 3 kDa to 10 kDa, there are approximately
50,000 data points. That means, normalizing the data by using loess is very
intensive in terms of run time and computer memory (RAM). We were looking
for different possibilities to reduce the run time and the use of RAM. One possi-
bility is to use different levels of subsampling. For example, a subsampling of 10
collects each 10th data pair to calculate the smoothing curve. Smoothing curves,
based on subsampling are almost identical to the original smoothing curve with
less run time and use of memory. But even with this modification, computing
the baseline correction was still too slow. Therefore, another was implemented.
We developed a new smoothing method, named robust smoother, which is based
on maximum likelihood [13] and available as a separate R package rsmooth. The
robust smoother was written in Fortran and needs significantly less run time and
computer memory than the loess method.

2.2 Calculation of the F-Statistics

Afterwards, F-statistics are calculated for a series of one-way ANOVAs for se-
quential non-overlapping windows of data which cut the spectra into equal-sized
bins along the m/z axis. The window size can be varied via the argument winSize
which specifies the number of data points collected in a window. The ANOVA
with the spectrum as factor is calculated for the data points within each window.
The F-statistics describing the effect of the spectra compared to measurement
noise have to be modified and corrected in several steps (figure 1) before the
theoretical F-distribution (figure 2) can be used to calculate p-values.

In the first step, the denominator of the F statistic (MSE) is smoothed to
increase the statistical power of the ANOVA [20]:

F ′ =
MSR

MSE′ (1)
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Fig. 2. QQ-plot for the corrected modified F-statistics (F*)

The smoothed MSE value (MSE’) is based on a summary function of the neigh-
boring MSE values. Examples for these summary functions are mean and me-
dian, which can specified via the argument mean. The second tuning parameter
to influence the calculation of MSE’ is B.mse, the range of neighboring MSE
values. B.mse has to be chosen with some care: in our experience, peaks in the
range from 1 kDa to 10 kDa are rather narrow in the sense that they cover a
comparatiively small range of m/z values; additionaly, this area contains a lot of
noisy peaks, and it is more difficult to separate significant peaks from the noise.
Therefore it is generally recommended to smooth the MSE-values stronger by
choosing a higher B.mse. The opposite is the case in the area over 10 kDa. There,
peaks are wider and easier to classify. Hence, B.mse should be smaller.

After smoothing the MSE, the F’-statistics still have to be corrected.
Figure 2 shows that the observed F’-statistics still do not follow the theoret-
ical F-distribution. It is obvious though that the observed F’- statistics differs
from the theoretical distribution only by a constant factor c. Therefore, the mod-
ified F-statistics (F’) is further modified to yield F* (formula 2). Similar to F’,
the F*-statistics is calculated by a smoothing step. The user has to choose a
mean value and a B-value (B.Fprime) again. Figure 2 shows the observed F* are
following the theoretical distribution.

F ∗ = c ∗ F
′

(2)
FTheoretical ∼ F ∗ (3)
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In the next step, the significant peaks are detected. The peak detection is based
on the F*-statistics of the data set, the specified significance criterion, and the
chosen significance level. We suggest the use the false discovery rate (FDR)
proposed by Benjamini and Hochberg [2] to detect significant peaks: detection is
generally based on multiple testing, and peaks are classified as significant if the
null hypothesis of no difference between the spectra for their cluster is rejected.
Compared to p- values, the FDR provides an inherent multiplicity correction,
which provides a more realistic significance criterion. By specifying a cut- off for
the FDR, researchers can decide how many false positive peaks they are willing to
accept. For analyzing large data sets the problem of a high rate of false positives
is well known, and a strong motivation for using the FDR as significance criterion
[9,21]. Reiner et al. used the FDR for identifying differentially expressed genes
in microarray apllications, and suggested that controlling the probability of at
least one false rejection among many hypothesis appears to be over-conservative
and will result in reduced experimental efficiency due to unnecessary loss of
power” [16]. Instead of controlling the chance of any false positive result (like
e.g. via a Bonferroni correction), the FDR controls the expected proportion of
false positives among significant results. A FDR threshold is determined from
the observed p-value distribution, and hence is adaptive to the amount of signal
in the data. Benjamini and Hochberg defined the FDR in the following formula

FDR = E(V/R; R > 0) (4)

where V is the number of false positives and R is the number of rejected hy-
potheses [2].

Depending on the chosen window size, it is possible that a several neighboring
cluster detect the same peak as significant. In this case, the peak labeling can
be improved by merging the clusters before the results are exported in a .ccl file.
The .ccl file format is based on the extended Markup Language and is used by
Ciphergen’s software to save and to re-import data files which were analyzed by
the peak detection algorithm implemented in Ciphergen’s software.

2.3 Implementation in R

R [1] is based on the statistical language S and was developed by R.Ihaka and
R. Gentleman in the middle of the 1990s. The advantages of high modularity
and the chance for fast developing and adapting of code by using additional
code packages were the main reasons for the implementation of the algorithm
in R. The use of key functions improves the usability of ProSpect and gives the
user full control over the parameter set at the same time. That is important for
users like molecular biologists and physicians who are mostly unfamiliar with
the statistical software R and also involved in the analysis of the data sets. Key
functions like summaryPeaks() and plotPeaks() help the user to analyze the data
at different steps of the peak detection algorithm and to visualize them by using
the Portable document file format (PDF).

Our collaborators noticed a lack of usability during the first practical tests of
ProSpect . The most criticized problems were (1) spelling errors and the handling
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Fig. 3. The start-up window of ProSpectGUI

of case sensitive arguments and values, and (2) a lack of knowledge for most of
the statistical parameter and their useful range. These problems are mainly due
to the command line interface of R. The logical solution to improve the usability
is to develop a Graphical User Interface (GUI), called ProSpectGUI , which is
also available as a R package.

The start-up window of ProSpectGUI is shown in figure 3 and contains three
frames which are visible by a borderline realized as relief. Frames are contain-
ers used to place and to collect widgets for example by different tasks.That is
useful for keeping the GUI design flexible and to add and replace groups of
widgets easily. Before a run can be started, the user has to specify a minimal
set of arguments. Afterwards, the event buttons which are connected to one of
the key functions of ProSpectcan be used. If a run is started, the status line at
the bottom of the start-up window show a message that the calculation is still
running. Advanced users get access to more control over the process by push-
ing the Options button. Figure 4 shows the Options window that opens after-
wards and offers different tuning parameters for each of the three key functions
(1)findPeaks(), (2)plotPeaks(), and (3)summaryPeaks(). The user can optimize
the offered parameter set and save it. Later, the same set can be used to analyze
other experimental data in similar runs.

3 Results

Two different datasets were used to validate our procedure, after applying the
standard pre-processing steps in Ciphergen’s software [20]:

(1) Spike-in data. Bovine insulin at approximately 5733 Da was spiked into
human blood serum, at seven levels of dilution: one control with only serum
and six standard spike-ins with 10,6,4,2,1, and 0.4 μl of standard solution in
serum. Each dilution was performed in independent duplicates, resulting 14
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Fig. 4. The options window of ProSpectGUI serving the full set of tuning parameter

for the R package ProSpect

spectra which were analyzed by low laser intensity in the region from 5 to
6.5 kDa, with 3765 points per spectrum.

(2) Lung cell line data (H69). In this study we analyzed four spectra of a lung
cell line resistant to chemotherapy versus four spectra of sensitive lung cell
line by low laser intensity. The data were restricted to a range from 3 to 10
kDa, with 4295 points per spectrum.

Furthermore, we used two larger datasets to demonstrate the routine appli-
cation of the ProSpect software bundle to more realistic clinical studies. The first
dataset was a drug sensitivity study with 30 spectra (independent duplicates of
8 patients sensitive to a drug and 7 patients resistant to it) performed at four
different chip surfaces. All together, 128 spectra with low laser intensity were
analyzed (for one chip only 28 spectra were available, due to quality control rea-
sons). The second dataset is publicly available from http://home.ccr.cancer.
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Fig. 5. Analysis of the spike-in data in the region from 5.5 kDa to 6 kDa [20]

gov/ncifdaproteomics/ppatterns.asp and came from an ovarian cancer study
that consists 162 cases and 91 controls and were performed without duplications.
Figure 5 shows the results of the Spike-in data analysis from 5.5 kDa to 6 kDa.
The graph on top visualizes the computed FDR values and shows the location
of potential biomarkers within the overlaid spectra. The bottom row of Figure 5
indicates the location of peaks identified by ProSpect as significant on an FDR
cut-off of 5% and the peak locations identified by Ciphergen’s software as stan-
dard method. In the region from 5.5 kDa to 6 kDa, the standard method detected
19 cluster (48 windows) and the proposed method implemented in ProSpect only
detected 2 cluster (7 windows).

After a manual review of these spectra, the result was ProSpect detected 1
false positive region compared with 30 from Ciphergen Software. For data (2)
the result was similar, the implemented peak detection algorithm in ProSpect
shows with 80% sensitivity a lower false discovery rate (8%) than the standard
method (30%).

4 Conclusions

ProSpect is modular programmed and provides a simple mechanism to extend
available code or to replace parts of it in the further development of the software.
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The new developed robust smoother (R package rsmooth) allows the usage of
ProSpect for high throughput analysis screening of SELDI mass spectra to detect
peak locations which differ between the analyzed spectra. The concept of key
functions improves the usability for ProSpect itself and was used to developed
the GUI add-on ProSpectGUI which helps user who are unfamiliar with R’s
command line interface.

The bundle of the R packages ProSpect , ProSpectGUI , and rsmooth was
successful tested and detects potential biomarkers in SELDI mass spectra better
than the standard software from Ciphergen.

5 Outlook

The results for comparing ProSpect and Ciphergen’s software show not only that
the peak detection of ProSpect is better. It becomes also visible that the peak
quantification of ProSpect is not better compared to the standard software.

To label detected peaks on their real top is one of the challenges in Bioin-
formatics/Biostatistics. An improved peak labeling would afford the automatic
search for posttranslational modifications and provide a better comparison of dif-
ferent experiments. Hence, a new algorithm will be developed and implemented
in ProSpect which addresses this problem.

Furthermore, it will be possible to use clinical information to group the spec-
tra within the created plots. This feature will help to look for reasons why the
detected signals are different between the analyzed spectra.
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Abstract. HPLC-ESI-MS is rapidly becoming an established standard method
for shotgun proteomics. Currently, its major drawbacks are two-fold: quantifi-
cation is mostly limited to relative quantification and the large amount of data
produced by every individual experiment can make manual analysis quite diffi-
cult. Here we present a new, combined experimental and algorithmic approach to
absolutely quantify proteins from samples with unprecedented precision. We ap-
ply the method to the analysis of myoglobin in human blood serum, which is an
important diagnostic marker for myocardial infarction. Our approach was able to
determine the absolute amount of myoglobin in a serum sample through a series
of standard addition experiments with a relative error of 2.5%. Compared to a
manual analysis of the same dataset we could improve the precision and conduct
it in a fraction of the time needed for the manual analysis. We anticipate that our
automatic quantitation method will facilitate further absolute or relative quantita-
tion of even more complex peptide samples. The algorithm was developed using
our publically available software framework OpenMS (www.openms.de).

1 Introduction

The accurate and reliable quantification of proteins and peptides in complex biologi-
cal samples has numerous applications ranging from the determination of diagnostic
markers in blood and the discovery of these markers to the identification of potential
drug targets. HPLC-MS-based shotgun proteomics is rapidly becoming the method of
choice for this type of analysis. Currently, the huge amount of data being produced and
difficulties with absolute quantification of individual peptides are the major problems
with this method.

In this work, we propose an HPLC-MS-based approach for the absolute quantifica-
tion of myoglobin in human blood serum and demonstrate the viability of this approach
using reference material developed by the European Commission Joint Research Cen-
tre. Myoglobin is a low-molecular weight (17 kDa) protein present in the cytosol of
cardiac and skeletal muscle. Due to these characteristics, myoglobin appears in blood
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after tissue injury earlier than other biomarkers, such as creatine kinase MB isoenzyme
(CK-MB) and cardiac troponins [1]. It is of pivotal importance in clinical diagnosis
as early biomarker of myocardial necrosis. Serum myoglobin has been used in rou-
tine practice since the development of automated non-isotopic immunoassays [2]. Cur-
rently, the National Academy of Clinical Biochemistry [3], the International Federation
of Clinical Chemistry and Laboratory Medicine (IFCC) [4], and the American College
of Emergency Physicians [5] have recommended use of myoglobin as early marker
of myocardial necrosis. Unfortunately, results from different analytical procedures for
myoglobin determination have significant biases as a result of the lack of assay stan-
dardization. Results from National External Quality Assurance Schemes showed a bias
of over 100% for serum myoglobin [6, 7]. Standardization of any measurand requires a
reference measurement system, including a reference measurement procedure and (pri-
mary and secondary) reference materials (RM) [8]. The joint HPLC-MS/bioinformatics
approach has been used to develop a reference method that can be used to standardize
myoglobin assays [9, 10] and subsequently to reduce the bias observed between com-
mercial myoglobin assays, to standardize and harmonize measurement results, and to
improve quality of diagnostic services.

In the experimental part of this work, myoglobin was separated from the highly
abundant serum proteins by means of strong anion-exchange chromatography. Subse-
quently, the myoglobin-fraction was trypsinized and the peptides were analyzed by cap-
illary reversed-phase high-performance liquid chromatography-electrospray ionization
mass spectrometry (RP-HPLC-ESI-MS) using an ion-trap mass spectrometer operated
in full-scan mode. In order to avoid quantification errors by artifacts in the sample
preparation we added a constant amount of horse myoglobin to each sample in the ad-
ditive series. We chose horse myoglobin as internal standard, since the tryptic horse
peptides corresponding to their human counterparts elute roughly at the same time and
are sufficiently different from the human peptides, such that corresponding peptides
have different mass. To achieve an absolute quantification, known amounts of human
myoglobin were added to aliquots of the sample. Each of the samples was measured in
four replicates.

The raw data acquired by the instrument was analysed automatically using a newly
developed algorithm that detects and quantifies all ions belonging to peptides in the
sample. The cornerstone of the algorithm is formed by a two-dimensional model of the
peptide isotope pattern and its elution profile. This model is then applied to accurately
and automatically integrate the raw data into (relative) intensities proportional to the
amount of the peptide. Using standard statistical tools, we can then determine the true
concentration of myoglobin in our samples.

Our results indicate that the algorithms outperforms manual analysis of the same
data set in terms of accuracy. It allows an accurate determination of myoglobin in serum
from a set of HPLC-MS raw data sets without manual intervention. The relative errors
observed were as low as 2.5% and thus below the errors observed in manual analysis
of the same data set. Moreover, these results could be obtained in a fraction of the time
required for the manual analysis.

Besides its use in the reference method for myoglobin quantitation, we anticipate
that our automatic method is generic enough such that it will facilitate quantitative
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analysis of even more complex proteomics data without labeling techniques (see for
example [11]) and thus allow for other types of analyses and high-throughput appli-
cations such as detecting diagnostic markers, or the analysis of time series. The algo-
rithm was implemented within our publically available software framework OpenMS
(www.openms.de).

The outline of the paper is as follows. In Section 2 we describe the overall exper-
imental setup and algorithmic techniques applied to the data. Section 3 gives detailed
results of the manual and automatic analysis of these data. We conclude with a brief
discussion of the method, its advantages and limitations in Section 4.

2 Methods

In the following two subsections we describe the experimental protocol to produce the
data and the algorithmic approach taken to conduct the quantification and analysis in an
automated fashion.

2.1 Sample Preparation and Data Generation

We give a brief summary of sample preparation and data generation (more details
and optimizations of experimental conditions will be described elsewhere). Briefly,
myoglobin-depleted human serum (blank reference serum, from the European Commis-
sion - Joint Research Centre - Institute of Reference Materials and Measurements, Geel,
Belgium, IRMM) was spiked with 0.40-0.50 ng/μl human myoglobin (from IRMM).
This concentration represented the target value to be quantitated. To this spiked serum
sample, 0.50 ng/μl horse myoglobin (Sigma, St. Louis, MO) were added as internal
standard. For the additive series, known amounts of human myoglobin standard were
added to the serum sample, resulting in concentrations of added myoglobin standard
between 0.24 and 3.3 ng/μl. Usually, 6-7 standard additions were performed. The myo-
globin fraction was isolated from 20 μl human serum by means of strong anion-exchange
chromatography upon collection of the eluate between 4.2 and 4.8 min eluting from a
ProPac SAX-10 column (250×4.0 mm i.d. with 50×4.0 mm i.d. precolumn, Dionex,
Sunnyvale, CA). The column was operated with a gradient of 0-50 mmol/l sodium
chloride in 10 mmol/l TRIS-HCl, pH 8.5, in 10 min, followed by a 4 min isocratic
hold at 50 mmol/l sodium chloride and a finally a gradient of 50-500 mmol/l sodium
chloride in 2 min at a volumetric flow rate of 1.0 ml/min. After evaporation of part of
the solvent in a vacuum concentrator, the myoglobin fraction was adjusted to a defined
weight of 100.0 mg using an analytical balance. The proteins in the myoglobin fraction
where digested for two hours at 37 ◦C with trypsin (sequencing grade, from Promega,
Madison, WI) using RapigestTM (Wates, Milford, MA) as denaturant following stan-
dard digestion protocols. The digested fractions were transferred to glass vials and ana-
lyzed by reversed-phase high-performance liquid chromatography-electrospray ioniza-
tion mass spectrometry (RP-HPLC-ESI-MS). Desalting and separation of the peptides
was accomplished with a 60×0.20 mm i.d. monolithic capillary column (home-made,
commercially available from LC-Packings, Amsterdam, NL) and 6 min isocratic elu-
tion with 0.050% trifluoroacetic acid in water, followed by a 15 min gradient of 0-40%
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acetonitrile in 0.050% trifluoroacetic acid at a volumetric flow rate of 2.4 μl/min. The
eluting peptides were detected in a quadrupole ion trap mass spectrometer (Esquire
HCT from Bruker, Bremen, Germany) equipped with an electrospray ion source in full
scan mode (m/z 500-1500). Each measurement consisted of ca. 1830 scans. The scans
were roughly evenly spaced over the whole retention time window with an average of
0.9 scans per second. The sampling accuracy in mass-to-charge dimension was 0.2 Th.
The instrument software was configured to store the measurement data in its most un-
processed form available (described below). The raw data was converted to flat files of
size ca. 300 MB each using Bruker’s CDAL library. With the upcoming mzData stan-
dard data format for peak list information [12,13], this step should become much easier
in the near future. Quantitation of the myoglobin peptides in the serum sample was then
conducted as decribed in the next section.

2.2 Feature Finding

By the term feature finding we refer to the process of transforming a file of raw data
as acquired by the mass spectrometer into a list of features. Here a feature is defined
as the two-dimensional integration with respect to retention time (rt) and mass-over-
charge (m/z) of the eluting signal belonging to a single charge variant of a peptide. Its
main attributes are average mass-to-charge ratio, centroid retention time, intensity, and
a quality value.

In our study, the raw data set exported from the instrument consisted of profile spec-
tra, but no baseline removal or noise filtering had been performed. In particular, no peak
picking had taken place (where peak picking denotes the process of transforming a pro-
file spectrum to a stick spectrum by grouping the raw data points into one-dimensional
“peaks”, which have a list of attributes similar to those of features). Features are com-
monly generated from raw data by forming groups with respect to one dimension after
the other, thereby reducing the dimensionality one by one. However better results can
be achieved using a genuinely two-dimensional approach.

Theoretical model of features. Each of the chemical elements contributing to the sum
formula of a peptide has a number of different isotopes occuring in nature with certain
abundancies [14]. The mass differences between these isotopes can be approximated by
multiples of 1.000495 Da up to the imprecision of the instrument. Given these param-
eters, and the empirical formula of a peptide, one can then compute its the theoretical
stick spectrum. In our study, such an isotope pattern has 3-6 detectable masses. Since
the lightest isotopes are by far most abundant for the elements C, H, N, O, and S, it
is common to use the corresponding stick as a reference point, called monoisotopic s
peak.

If the peaks for consecutive isotope variants are clearly separated in the profile spec-
tra, they can be picked individually and combined to isotope patterns afterwards. How-
ever, in our raw data set, having a sampling accuracy of 0.2 Th, this is the case only for
charge 1. Already for charge 2 the profiles of peaks overlap to such an extent that such
a two-step approach is not feasible. Moreover, as the mass and charge increases, the
whole isotope pattern at a given fixed value of m/z becomes more and more bell-shaped
and eventually converges to a normal distribution. In our case, neither extreme is a good
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Fig. 1. (a) Effect of the smoothing width on the theoretical isotope distribution of a peptide of
mass 1350 Da. Increasing the smoothing width can emulate the effect of low instrument resolu-
tion. (b) A two-dimensional model for a feature of charge two and mass 1350 Da.

approximation. Instead, we model the m/z profile of the raw data points belonging to a
single isotope pattern by a mixture of normal distributions, as shown in Fig. 1 (left).

One of our design goals was that the algorithm should not rely on information about
specific peptides given in advance. Therefore the empirical formula of a peptide of a
given mass is approximated using so-called averagines, that is, average atomic com-
positions taken from large protein databases. For example, an averagine of mass 1350
contains “59.827” C atoms, “4.997” N atoms etc. We calculated the isotopic distri-
butions of the tryptic myoglobin peptides and found that they are well approximated
by averagines (see Fig. 3 in the Appendix). If necessary, an even better approximation
could be used that takes into account that the peptides are digested by a specific protease
(in our case trypsin), which results in a bias of the amino acids at the end of a peptide.
The theoretical m/z distribution is then obtained by convoluting the sticks of the theoret-
ical isotope pattern with a normal distribution to simulate the measurement inaccuracy.
The left part of Fig. 1 shows the effect of the smoothing width on an averagine isotope
distribution at mass 1350 Da.

The signal of a single charge variant of a peptide extends over a certain interval of re-
tention time. As a model for the retention profile, we currently use a normal distribution
with variable width. More sophisticated models that incorporate fronting and tailing ef-
fects that are observed especially for high intensity peaks are known (see e.g. [15, 16]).
These shall be investigated in subsequent work.

It is natural to assume that isotope pattern and elution profile are independent from
each other. Consequently, our theoretical model for features is a product of a model
for the m/z domain and a model for the retention time domain. An example of a two-
dimensional feature model is shown in the right part of Fig. 1.

Algorithm. The algorithm for feature finding consists of four main phases:

1. Seeding. Data points with high signal intensity are chosen as starting points of the
feature detection.

2. Extension. The region around each seed is conservatively extended to include all
potential data points belonging to the feature.
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3. Modeling. A two-dimensional statistical model of the feature is calculated.
4. Adjusting. The tentative region is then adjusted to contain only those data points

that are compatible with the model.

The modeling and adjusting phases can potentially have a large effect on the statisti-
cal model of the feature. Therefore we re-calculate the statistical model and apply the
adjusting phase for a second time. That is, we repeat phases 3 and 4. A feature is re-
ported only if its quality value is above a user-specified value. Input and output of the
algorithm is illustrated in Fig. 2. We will now go through the four stages in more detail.

Seeding. After the relevant portion of the input file (a retention time window) has been
read into main memory, it is (effectively) sorted according to the intensity of the raw
data points. In a greedy fashion we consider the most intense data point as a so-called
seed for the formation of a feature. This is motivated by the fact that the most intense
data points are very likely to belong to a feature. A seed is considered for the next
phase (extension) only if it is not already contained in a feature. We stop when the seed
intensity falls below a threshold. (The actual implementation does not sort the raw data
physically, but uses a priority queue instead, from which the seeds are extracted in order
of intensity. This way the low-intensity data points need not be sorted.)

Extension. Given a seed, we conservatively determine a region around it that very
likely contains all data points of the feature. The region grows in all directions simulta-
neously, preferring the strongest raw data points near the boundary.

Initially, the region is empty and the boundary set only contains the seed. In each
step, a data point in the boundary is selected and moved into the region. Then the bound-
ary is updated by exploring the neighborhood of the selected data point. The selected
data point is chosen based on a priority value, and the boundary set is implemented as
a priority queue (This should not to be confused with the priority queue used for seed-
ing). The priority of a data point is never decreased by an update of the boundary. If
the updated priority of a neighboring data point exceeds a certain threshold, it is moved
into the boundary. The seed extension stops when the intensity of all data points in the
boundary falls below a certain threshold.

The priority values of raw data points are not identical to their intensities. Their
purpose is to control the growth of the feature, such that a number of constraints are
met: The boundary should be a relatively ‘thin’ layer around the region. It should be
resistant to noise in the data and allow for ‘missing’ raw data points. Data points close
to the region should be preferred. We compute the priority values as follows: When a
data point is extracted from the priority queue, we explore a cross-like neighborhood
around it in four directions (”m/z up”, ”m/z down”, ”rt up”, ”rt down”). The priority is
calculated by multiplying the intensity of the data point with a certain function of the
distance from the extracted point. Currently we use triangular shapes that go to zero at
distance 2.0 s in rt and 0.5 Th in m/z.

The criteria controlling the growth of the boundary and the stopping of the seed ex-
tension are adapted during the seed extension process based on the information gathered
so far. This is done as follows:

1. We compute an intensity threhold for stopping the extension phase. The The
threshold is a fixed percentage of the 5 th largest inensity (we do not choose the largest
for robustness reasons).
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2. We maintain a running average of the data point positions, weighted by their in-
tensities. The neighborhood of a boundary point is not further explored if it is too distant
from the centroid of the feature. This is important to avoid collecting low intensity data
points (baseline) when the seed has a relatively low intensity.

Modeling. Given a region, we fit a two-dimensional statistical model to it. The point
intensity of the two-dimensional model is the product of two one-dimensional models,
one explaining the isotope pattern and one explaining the elution profile. The raw data
points are considered empirical samples from this distribution.

The fit in m/z dimension examines different distributions implied by charge states
in a range provided by the user (currently 1 to 3). For each charge, we try a number of
smoothing widths of the averagine isotope pattern (currently 0.15, 0.2, 0.25, 0.3, and
0.35 Th). The correct charge state is likely to provide the best fit to the data points. In
addition we also fit a normal distribution using maximum likelihood estimators. As a
measure of confidence in the charge prediction we report on the distance to the fit with
the second best charge hypothesis. The fit in retention time dimension uses a maximum
likelihood normal approximation.

The quality of fit of the data against a model is measured using the squared
correlation

(
∑

x f(x)g(x))2∑
x f(x)2

∑
x g(x)2

,

where f = observed, g = model, x = data point position. Other methods like the
χ2-test have already been implemented in OpenMS and can be used if desired.

Adjusting. At this stage of the algorithm, we have a region of data points and a statis-
tical model for it. But the region is very likely to contain data points not belonging to
the feature. To discard those, and keep only those data points which are consistent with
the statistical model, we re-assemble the data points contained in the feature similar to
the extension phase using a modified priority that takes the model into account. Using
a model is the main difference of this phase compared to the extension phase.

To combine the theoretical and observed intensities, we use the geometric mean of
the observed intensity of a data point and its prediction by the model as the priority for
extension. This is based on the following considerations: Since the normal distribution
decays exponentially at its tails, data points not explained by the model are effectively
cut off. Moreover the geometric mean compensates for inaccuracies when the intensity
of the data points decays faster than predicted. Of course many other strategies for
adjusting can be considered and should be tested in the future.

3 Results

We present results from a series of 32 RP-HPLC-ESI-MS measurements performed as
described in Section 2.1 (four replicates of eight different spiked concentrations). The
quantification was performed using the eleventh tryptic peptide of human myoglobin,
HGATVLTALGGILK, here denoted T11hu, with and without the tenth tryptic peptide



158 C. Gröpl et al.

Fig. 2. (a) The raw data map drawn as a 3D picture. Each sample resulted in of these two-
dimensional data sets. (b) Feature finding isolates individual peptides out of this map. The figure
shows one of the peptides used for quantification: the raw data is shown as red sticks, the optimal
model describing the feature is plotted on top in blue.

of horse myoglobin, HGTVVLTALGGILK, denoted T10ho, as an internal standard.
These two peptides are sufficiently similar to behave similarly in terms if ionization
and still can be separated easily in both RT and m/z dimension.

To assess the quality of the automated analysis, we also report the results of a man-
ual expert analysis of the same data set that was performed earlier by one of the au-
thors [17]. Manual quantification was performed using the Bruker instrument software
and Microsoft Excel. The peak areas were calculated from extracted ion chromatograms
with an isolation width of ±0.5 Da after smoothing with a gauss filter.

Automated analysis was performed using the features found by the algorithm de-
scribed in Section 2.2 without further manual intervention. We provided approximate
masses and approximate retention times of the peptides used for quantification and re-
stricted the feature finding to a large window of the raw data (RT = 900–1600 sec, m/z =
600–1000 Th.) to speed up the process. The algorithm then identified features in the 32
data sets, integrated the feature areas and performed the statistical analysis detailed in
the following table:

Method OpenMS Manual
Computed concentration [ng/μl] 0.474 0.382

Lower bound of 95% interval [ng/μl] 0.408 0.315
Upper bound of 95% interval [ng/μl] 0.545 0.454

True value [ng/μl] 0 .463 0 .463
Relative deviation from true value [%] +2.46 −17.42

Lower bound of 95% interval [%] −11.82 −32.04
Upper bound of 95% interval [%] +17.62 −1.84

Both manual and automated analysis were able to estimate the true concentration
of myoglobin in the serum sample with very high precision. While manual analysis of
these large data sets amounts to half a day of work, automated analysis of the datasets
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could be performed in less than 2 hours on a 2.6 GHz Pentium IV machine with 1 GB
of RAM running Linux. The regression results are shown in Fig. 4 in the Appendix.

The results of several additional independent studies for myoglobin quantification
all yielded relative quantification errors below 8% (data not shown). Automated analysis
of the data sets yielded comparable or better results in these experiments.

4 Conclusion

Analyzing complex shotgun proteomics data is still a major challenge; the size of the
data, its complex nature, and the lack of established algorithms to reduce these data
to their essentials are all restricting the use of this powerful technique to rather trivial
experimental setups.

We present an algorithm for the automated data reduction for quantification pur-
poses based on a statistical modeling of peptide isotope patterns and elution profiles.
The algorithm is robust and handles large data efficiently. In contrast to the tiresome
manual analysis of large datasets, this automated technique allows the analysis of a
large number of samples, thus enabling more complex experiments. As a result, we can
even use this technique to absolutely quantify individual proteins from the serum sam-
ple through standard addition techniques with extremely high accuracy (2.5% relative
error). In most routine applications, this level of accuracy might not be viable or nec-
essary, but the automated analysis clearly saves valuable time over manual approaches
and even results in improved accuracy of the analysis.

The present approach can be used for direct quantification of a target peptide or a
number of target peptides in a complex biological matrix, such as human blood serum
with simultanous identification. It is clearly demonstrated that the method can be used
for quantitative determination of human myoglobin in serum and therefore is a suitable
candidate for serving as a reference method. It can be used for value assignment of
a candidate CRM as under investigation by IRMM. By using the present method in
combination with a matrix-based CRM, in vitro diagnostics (IVD) manufacturers could
demonstrate traceability of their working methods and kits as used in clinical chemistry,
fulfill the legal requirements, and further improve quality of products and services by
harmonization and standardization.

While it is clear that the proposed technique is (experimentally) too involved and
costly for most routine applications, it clearly is a viable technique for high accuracy
applications, for example as reference methods in standardization. The algorithms pro-
posed here nevertheless are not limited to this application and can be used in a wide
range of other proteomics experiments, e.g. relative differential proteomics for the iden-
tification of diagnostic markers or drug targets. The ability to analyze data on a larger
scale will enable a wider range of experimental setups encompassing a larger number of
samples and repeats, something that is currently not viable due to the limits of manual
analysis. The method can also be distributed trivially on a compute farm allowing for
extremely rapid analysis of data.

The algorithms proposed are clearly first steps only. More advanced statistical mod-
els accounting for asymmetric peak shapes, strongly overlapping features, or low signal-
to-noise ratios are not yet accounted for in its current state. Extensions addressing these
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issues are currently being implemented and will hopefully yield even better perfor-
mance in future versions of the software.
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Abstract. The paper describes a new approach to the prediction of
probable biological units from protein structures obtained by means
of protein crystallography. The method first employs graph-theoretical
technique in order to find all possible assemblies in crystal. In second
step, found assemblies are analysed for chemical stability and only sta-
ble oligomers are left as a potential solution. We also discuss theoretical
models for the assessment of protein affinity and entropy loss on complex
formation, used in stability analysis.

1 Introduction

Considerable part of protein functionality in biological systems is associated
with ability of proteins to bind each other and form stable complexes (assem-
blies, or biological units). Data on multimeric state of protein complexes and
spatial arrangement of their subunits may often provide a deeper insight into
the functioning of machinery of life and role of particular proteins in it.

Experimental means for the identification of spatial structure of protein com-
plexes are limited. Because of their relatively large size, protein assemblies are
not a good object for NMR studies. Some proteins may exist in dynamic equilib-
rium between different multimeric states, which also complicates NMR analysis.
Electron microscopy is suitable for studying large complexes, but it yields rather
low-resolution structures. About 80% of entries in Protein Data Bank [1] repre-
sent structures solved by means of X-ray diffraction on protein crystals. In these
experiments, crystal structure is identified in the form of atomic coordinates in
the asymmetric unit (ASU), unit cell geometry and space symmetry group. How-
ever, protein crystallography does not identify true protein associations among
all protein contacts in a crystal. At the same time, it is reasonable to expect
that protein assemblies do not dissociate during the crystallisation process and
therefore protein crystals should contain assemblies as subunits.

Identification of protein assemblies in crystals is, in general, a non-trivial
task. The asymmetric unit may be chosen in many different ways, and it does
not necessarily coincide with the biological unit. An asymmetric unit may be
made from more than one assembly, or a few ASUs may be required to make an
assembly, or assembly may be made from several incomplete ASUs. A further
complication arises if one assumes that a few different complexes may co-exist in
dynamic equilibrium, then crystal may be made from more than one assembly.

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 163–174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Two approaches to the problem have been proposed so far [2,3]. Both of them
are based on the scoring of individual protein interfaces (identified as crystal
contacts between monomeric chains) in order to conclude about their biological
relevance. PQS server at EBI-MSD [2] scores interfaces mostly on the basis of
interface area, with a point system for the hydrophobic effect of complexation,
hydrogen bonds, salt bridges and disulphide bonds. The assemblies are built
up by the progressive addition of monomeric chains that are bonded by high-
scored interfaces. PITA software [3] uses a sophisticated statistical potential to
score the interfaces [4] and looks for the solution by iterative bipartitioning of
the largest possible assembly in crystal until the minimum-cut interface score
exceeds a predefined threshold.

In this paper, we propose another approach based on the consistent enu-
meration of all assemblies that are possible in a given crystal, with subsequent
analysis for chemical stability. The analysis is based on the evaluation of free
energy of complex dissociation, which includes the free energy of binding and the
entropy change term. As found, the new approach predicts protein assemblies
with a higher success rate than its predecessors.

2 Graph-Theoretical Detection of Protein Assemblies in
Crystals

We now want to find all different assemblies in crystal that are allowed by sym-
metry considerations and content of ASU. We do not assume that crystal is
necessarily made from identical assemblies, so that we are looking to find all
possible sets of different assemblies that fill all the crystal space in a systematic
manner. One can note that each such set is unambiguously identified by the
inner-assembly interfaces. We will refer to such interfaces as engaged. Then the
search may be formulated as enumeration of all possible interface engagements
that obey the following rules:

1. Due to crystal symmetry, if an interface of a particular type (that is, between
given monomeric chains in a particular relative position) is engaged, all other
interfaces of the same type in crystal are also engaged.

2. An interface cannot be engaged if doing so results in assembly that contains
identical chains in parallel orientations.

Rule 2 originates from the consideration that if an assembly contains two
molecules in parallel orientation, then due to translation symmetry in crystal
this assembly must have infinite size. As a consequence of this rule, assembly
size cannot exceed the size of unit cell.

The described task may be efficiently addressed by a backtracking scheme, a
procedure commonly used in graph matching algorithms [5]. Imagine crystal as
a graph where monomeric chains represent vertices, and interfaces between the
chains represent edges. The vertices may be calculated by applying all symmetry
operations of the required space symmetry group to the chains in ASU, and
translating the obtained unit cell according to the cell dimensions and geometry.
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The obtained graph is periodic in three dimensions, with period equal to the size
of unit cell in the respective dimension. The periodicity allows one to imitate
calculations for an infinite crystal on a single unit cell by applying a periodic
shift to the inter-cell edges.

1. Calculate periodic graph representing the crystal
2. List all unique interfaces as Ik

3. Make empty sets of engaged and tested interfaces {I} := ∅, {T} := ∅
4. call Backtrack({I}, {T})
5. stop

procedure Backtrack ( interface sets {I}, {T} )

B.1 copy {T} to {T1}
B.2 for all interfaces Ik not found in {I} and {T1} do
B.3 copy {I} to {I1}
B.4 add Ik to {I1} and {T1} (engage interface Ik)
B.5 do
B.6 Identify assemblies formed by interfaces in {I1}
B.7 Identify induced interfaces and add them to {I1} and {T1}
B.8 until no interfaces are induced
B.9 if no assembly contains identical parallel chains then

B.10 output set of assemblies as possible solution
B.11 if more stable assemblies may be found then
B.12 call Backtrack({I1}, {T1})
B.13 endif
B.14 done

Fig. 1. The assembly enumeration algorithm, see text for details

The assembly enumeration algorithm is schematically depicted in Fig. 1. It
represents a recursive backtracking scheme, which explores all unique combi-
nations of engaged interfaces {I}. Each such combination corresponds to a set
of assemblies which is noted for further analysis of chemical stability. Set {T }
and its local copies {T1} are used in order to avoid redundant combinations
of the interfaces. In steps B.5-8 the algorithm looks for “induced” interfaces
and engages them. “Induced” interface is identified as one that appears to be
internal to assembly formed by previously engaged interfaces. For example, en-
gaging interfaces A1 : A2 and A2 : A3 in trimer (A1, A2, A3) induces interface
A1 : A3.

It may be shown that the total number of unique interface combinations is
NI !, where NI is the total number of unique interfaces. Factorial complexity
becomes prohibitive for many PDB entries where NI ≥ 10. Therefore, in step
B.11 of the algorithm, we terminate those branches of the recursion tree which
definitely do not lead to stable assemblies. This technique is borrowed from
graph-matching algorithms [5]. The termination condition is derived from the
chemical stability analysis and will be described in Section 4.
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3 Analysis of Chemical Stability

Most of assemblies, emerging from the graph-theoretical search, represent unsta-
ble structures, which dissociate in dilute solutions. In what follows, we consider
assembly as unstable if equilibrtium constant of dissociation is greater than 1.
Then protein complex (A1, A2 . . . An) dissociates into subunits Ai (any sub-
unit may be a multimer) if the free energy change upon dissociation ΔGdiss is
negative:

ΔGdiss = −ΔGint − TΔS < 0 (1)

where ΔGint represents free energy of binding of subunits Ai and ΔS is the
rigid-body entropy change upon dissociation. Consider terms of Eq. (1) in more
detail.

3.1 Free Energy of Protein Binding

The binding energy ΔGint is calculated as a free energy of interface formation
between subunits Ai. There are many factors that contribute into protein asso-
ciation energy [6,7,8,9,10,11,12,13,14], but it is widely acknowledged that major
contributions are due to the interaction of protein surface with the solvent and
formation of hydrogen bonds and salt bridges across the interfaces:

ΔGint = ΔGs(A1, A2 . . . An) −
n∑

i=1

ΔGs(Ai) − EhbNhb − EsbNsb (2)

In Eq. (2), ΔGs(A) stands for the solvation free energy of folding. It may be
approximated as [11,16]

ΔGs(A) =
∑

k

Δσk(ak − ar
k) (3)

where summation is done for all atoms in structure A, ak stands for the atom’s
solvent-accessible surface area, Δσk and ar

k are atomic solvation parameters and
surface area in reference state, respectively. Δσk and ar

k depend on the atom
type and charge state in residue. Eq. (2) takes into account that atom charge
state may change with changing ak due to interface formation.

Eq. (2) measures the effect of each of Nhb hydrogen bonds and Nsb salt bridges
between all the subunits Ai by average free energy contributions Ehb and Esb,
respectively. The strength of a hydrogen bond is estimated to be between 2 and
10 kcal/mol [17]. However, upon disengaging an interface, all potential hydrogen
bonding partners become satisfied by hydrogen bonds to water. The only effect
that remains here is the decreasing entropy of solvent due to the loss of mobility
by bound molecules. Estimations show a contribution of about Ehb ≈ 0.6 − 1.5
kcal/mol per bond [18,19]. Experimental data on the stabilisation effect of salt
bridges are limited. Known studies suggest that free energy contribution of a
salt bridge is very close to that of a hydrogen bond Esb ≈ 0.9 − 1.25 kcal/mol
[20,21].
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3.2 Entropy of Protein Complex Formation

Entropy contribution into the free energy of complex dissociation ΔGdiss (cf. Eq.
(1)) originates from the change of the vibrational mode pattern and regain of
rotational and translational degrees of freedom by subunits Ai upon dissociation.
Entropy of subunit A may be represented as

S(A) = Srb(A) + Svib(A) + Ssurf (A) (4)

where Srb = Strans+Srot stands for the rigid-body (translational and rotational)
entropy term, Svib – entropy of internal vibrational modes and Ssurf – entropy
of surface atoms with fractional degrees of freedom.

There are no rigorous theoretical models for the rigid-body entropy of size-
able objects in liquids. Translational entropy contribution Strans may be approx-
imated by the Sackur-Tetrode equation, which was originally derived for the case
of small molecules in gas phase [22,23,24]

Strans(A) = R log

[(
2πm(A)kT

h2

)3/2 (
ve5/2

)]
(5)

where m(A) is molecular weight and v is the volume open to a molecule. Eq. (5)
was found to be a reasonable approximation in liquid phase, too, after corre-
sponding adjustment of the value of v [25].

Rotational rigid-body entropy term can be estimated as [23,24]

Srot(A) = R log

[ √
π

σ(A)

(
8π2kTe

h2

)3/2√
J1(A)J2(A)J3(A)

]
(6)

where J1, J2 and J3 are the principle moments of inertia and σ is the symmetry
number. This expression seems to be a good approximation in liquids, where
rotational entropies were found to differ by only 2% from gas phase values [26].

Vibrational entropy may be estimated as a sum of Svib for all frequences in
the molecule’s vibration spectra [26]

Svib =
∑

k

[
R

hcνk

kT

(
exp
(

hcνk

kT

)
− 1
)−1

− R log
(

1 − exp
(
−hcνk

kT

))]
(7)

where νk is kth frequency. Calculation of vibration spectra for protein structures
is a computationally hard procedure. As was shown in Ref. [26], usually the
value of TSvib is less than 0.5 kcal/mol at normal temperatures, and one can
expect that its change at dissociation TΔSvib would be much less than that. We
therefore neglect vibrational entropy in our model.

The last entropy contribution in Eq. (4), Ssurf (A), is associated with the
mobility of surface (side-chain) atoms. In first approximation, this term may be
considered as proportional to the surface area of structure A:

Ssurf (A) = F
∑

k

ak = FWS(A) (8)

where WS(A) is solvent-accessible surface area of subunit A.
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Eqs. (4-8) allow one to estimate a subunit’s entropy in solution as

S(A) ≈ C +
3
2
R log (m(A)) +

1
2
R log

(
J1(A)J2(A)J3(A)

σ(A)

)
+ FWS(A) (9)

This expression contains two empirical parameters: surface entropy factor F ,
introduced in Eq. (8), and constant entropy term C, which depends on the poorly
defined volume v (cf. Eq. (5)). Authors of Ref. [26] estimate uncertainty in Strans

as 20-40% of the estimate given by Eq. (5), however state that the expression
for Srot (Eq. (6)) is rather precise. We therefore introduce in Eq. (9) the empiric
parameter C in attempt to compensate the uncertainty in the definition of v
and possibly to account, in first approximation, for other entropy terms, such as
conformational entropy, for which no feasible model can be proposed.

Using Eq. (9), entropy change upon complex dissociation in Eq. (1) may be
estimated as

ΔS =
n∑

i=1

S(Ai) − S(A1, A2 . . . An)

= (n − 1)C +
3
2
R log

(∏
i m(Ai)∑
i m(Ai)

)
+ FWI(A1, A2 . . . An)

+
1
2
R log

( ∏
i;k Jk(Ai)σ(A1, A2 . . . An)∏

k Jk(A1, A2 . . . An)
∏

i σ(Ai)

)
(10)

where WI(A1, A2 . . . An) is buried surface area of subunits Ai in the complex.

3.3 Dissociation Pattern

Eqs. (1-3,10) allow one to estimate stability of a protein assembly if its dissoci-
ation pattern, or set of subunits {Ai}, is known. For the purpose of our study it
is enough to find at least one dissociation pattern for which ΔGdiss < 0 in order
to detect instability and to remove the assembly from further consideration.

In order to be a potential dissociation pattern, set of subunits {Ai} should
satisfy the following conditions:

1. All multi-chain subunits must represent connected stable assemblies.
2. From symmetry considerations, identical interfaces can not be internal to a

subuint and separate two subunits in the same dissociation pattern.

Dissociation patterns may be found using a backtracking scheme similar to
that shown in Fig. 1. Represent assembly as a graph in which vertices and edges
correspond to monomeric chains and interfaces between them, respectively. Then
starting point for the algoritm in Fig. 1 would be a non-empty set of all interfaces
{I} found in assembly (step 3), loop B.2 runs over all interfaces found in {I} and
not found in {T }, in steps B.4 and B.7 the algorithm disengages interface Ik and
any interfaces induced by that, steps B.9-B.11 are replaced for the calculation
of ΔGdiss and stability analysis of the subunits calculated in step B.6. Each
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subunit is analysed for stability by a recursive application of the bactracking
scheme to the subunit. The recursion should terminate once a negative ΔGdiss

is encountered or all subunits contain only monomeric chains.
Dissociation pattern of stable assemblies may be of a potential interest, too.

In general, a protein complex may dissociate in a few different ways, the most
efficient of which would be the one with lowest ΔGdiss. Dissociation pattern
with lowest ΔGdiss may be easily identified by the backtracking scheme de-
scribed above, because it enumerates all possible dissociation patterns for stable
complexes.

4 Implementation

As described above, our procedure is based on the exchaustive enumeration of
all potential assemblies in crystal and their dissociation patterns, using recursive
backtracking schemes. Backtracking algorithms are known to be NP-complete
and therefore they may be computationally untractable unless a proper termi-
nation condition is employed.

Suppose that algorithm in Fig. 1 has generated a set of assemblies that all
appear to be unstable, so that ΔGr

int + TΔSr > 0, where index r stands for
the recursion level. Then entropy of dissociation on the next level of recursion
ΔSr+1 should be not less than ΔSr because any dissociation pattern on level
r + 1 results in the same or larger number of stable subunits than that on
level r, while the assembly size only increases with increasing recursion level
(cf. Eq. (10)). Maximum energy of binding on level r + 1 cannot be lower than
ΔGr

int +
∑

k ΔGint(Ik) where summation is done for all hydrophobic interfaces
that still may be engaged, i.e. those with ΔGint(Ik) < 0 and not found in the
interface sets {I1} and {T1} (cf. Fig. 1; ΔGint(Ik) is calculated using Eq. (2) for
n = 2). Therefore the termination condition is

ΔGr
int + ΔSr +

∑
Ik /∈{I1},{T1}

min (ΔGint(Ik), 0) ≥ 0 (11)

where all quantities are calculated for the volume of one unit cell. Despite a very
general nature of this estimate, we found that it works very efficiently, especially
if interfaces in the backtracking scheme are ordered by increasing ΔGint(Ik).

In our implementation, we define interface as protein surface area which
becomes inaccessible to solvent upon bringing two chains into contact. For the
surface area calculations, a method similar to that used in program AREAIMOL
of the CCP4 Program Suite [27] was employed. Recipies for the calculation of
hydrogen bonds and salt bridges are found in Refs. [6,15].

Parameters Ehb, Esb (cf. Eq. (2)) and C, F (10) were chosen by a fitting
procedure using a benchmark set of 218 structures published in Ref. [3]. Since
only multimeric states are known for the benchmark structures, we assumed
that correct oligomers are the ones of the required multimeric state and lowest
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Table 1. Empirical parameters entering Eqs. (2,10), obtained through the fitting of

multimeric states found in the benchmark set of 218 PDB entries from Ref. [3]

Ehb, kcal/mol Esb, kcal/mol C, kcal/mol F , kcal/(mol*Å2)

0.51 0.21 11.7 0.57 · 10−3

ΔGdiss (1). Then the parameters were fitted such as to satisfy the following
system of inequalities for as many structures as possible:{

ΔGdiss > 0 for correct oligomers
ΔGdiss ≤ 0 for all other multimeric states not lower than the correct one

(12)
The described algorithm is implemented as a web-server available at URL given
in the title. The server provides pre-calculated data for all PDB entries solved
by means of X-ray crystallography, and allows to upload PDB and mmCIF
coordinate files for interactive processing. Calculation time depends drastically
on the number of different interfaces in crystal, however most of entries are solved
in a few-minute time. The server also provides a detail annotation of interfaces
and structures, visualisation of assemblies and database search tools.

5 Results and Discussion

The resulting values of empirical parameters, used in Eq. (10), are listed in
Table 1. As seen from the Table, energy effect of hydrogen bonds and salt bridges
appears to be somewhat smaller than the estimates given in the above discussion,
but well within a reasonable range. Given that significant interfaces normally
have 10-20 and more hydrogen bonds, their contribution to the free energy of
binding Gint appears to be comparable with that of hydrophobic interactions.
Entropy contribution from the frozen motion of surface atoms in interfaces, F , is
quite small, just over 0.5 kcal/mol per 103Å2 of interface area. Most of entropy
change at complex formation comes from the constant entropy term, C, followed
by the mass- and moment of inertia- dependent terms (cf. Eq. (10)). Mathemati-
cally, the system of inequalities (12) appears slightly underfit, which means that
the used benchmark set may be insufficient for the calibration purposes, and the
results may still be improved if a larger data set is used.

Table 2 presents the assembly classification results obtained for the bench-
mark set of 218 PDB entries [3], used for the calibration of empirical parameters.
Each row of the Table corresponds to one of 5 oligomeric classes present in the
benchmark set, and columns give the classification counts obtained for that class.
As seen from the Table, we have obtained a nearly uniform success rate across
different oligomeric classes, with the lowest rate of 87% for tetramers. Tetramers
have also been found as the least predictable oligomeric class in Ref. [3], with
considerably larger differences between the classes. The overall success rate is
90%, which is higher than the one reported in Ref. [3] (84%). On comparison,
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Table 2. Assembly classification obtained for the benchmark set of 218 PDB entries

from Ref. [3]. The rows give counts of multimeric states obtained for assemblies an-

notated as monomeric, dimeric, trimeric, tetrameric and hexameric in the benchmark

set. Counts represented as N +M stand for N homomers and M heteromers obtained,

otherwise only homomers are listed.

1mer 2mer 3mer 4mer 6mer Other Sum Correct

1mer 50 4 0 1 0 0 55 91%
2mer 6 68+11 0 2+1 0 0 76+12 90%
3mer 1 0 22 0 1 0 24 92%
4mer 2 3 0 27+6 0 0 32+6 87%
6mer 0 0 0 1 10+2 0 11+2 92%

Total: 198+20 90%

the PQS server at EBI-MSD gives 78% of correct answers, however this figure
is less indicative because PQS was not optimised for the used benchmark set.

A detail study of misclassified cases shows a typical misestimate of ΔGdiss

(Eq. (1)) within ±5 kcal/mol. This value could be taken as a precision limit for
the models proposed in Section 3 if multimeric states in the benchmark set are
trusted. There is, however, one example of misclassification that is far beyond
any reasonable precision range for the method. PDB entry 1qex contains two
identical chains, which should form a homo-trimer [3]. Our procedure, as well as
PQS [2], suggests that it is actually a homo-hexamer shown in Fig. 2. Calculation
results indicate that the most favourable dissociation pathway for this assembly
is through a detachement in the isthmus between the two identical trimers with
ΔGdiss ≈ 90 kcal/mol. Such high value of the dissociation barrier implies that
the structure could well be hexameric.

The example of 1qex may indicate that not all multimeric states given in
the used benchmark set are correct. A probable source of errors may be that
only one oligomer from a few of them in chemical equilibrium is reliably de-
tected in experiment. However, we tend to explain most of misclassifications by
neglecting the specific experimental conditions, such as concentration, pH, tem-

A B

Fig. 2. Homo-hexamer found for PDB entry 1qex (A), and homo-trimer (B) which

should be the correct multimeric state according to data in Ref. [3], see discussion in

the text. The images were obtained using the Rasmol software [28].
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Table 3. Assembly classification obtained for the new entries deposited into PDB

through EBI-MSD deposition site. The reference classification has been done in MSD

by manual curation. See Table 2 for used notations.

1mer 2mer 3mer 4mer 5mer 6mer 8mer 10mer 12mer Sum Correct

1mer 131 11 0 4 0 2 2 0 0 150 87%
2mer 12+6 88+12 0+1 4 0 1 0+2 0 0 105+21 79%
3mer 1 0+2 6+2 0 0 0+1 0 0 0 7+5 66%
4mer 1+1 5+2 0 25+5 0 0 1+2 0 0 32+10 71%
5mer 0+1 0 0 0 2+1 0 0 0 0 2+2 75%
6mer 0+1 2+1 0 0 0 13+2 0 0 0 15+4 79%
8mer 0 1 0 0 0 0 0+2 0 0 1+2 67%
10mer 0 0 0 0 0 0 0 2 0 2 100%
12mer 2 0 0 0 0 0 0 0 5+1 7+1 75%

Total: 321+45 81%

perature and presence of other agents, in our models. A thorough account of all
affecting factors is difficult and if done then requires a quite detail description
of experimental conditions from a user.

Most structures are deposited into PDB without experimental evidence of
their oligomeric states. The benchmark set of 218 PDB entries published in
Ref. [3] contains all structures with oligomeric states that are currently known
to us as experimentally verified. Biological unit assignments in PDB is based
mainly on the curators’ scientific experience. Table 3 compares automatic as-
sembly classification, obtained by us, with manual curation results for 366 new
entries deposited recently into PDB at the EBI-MSD deposition site. As seen
from the Table, most (75%) of the depositions were classified as monomers and
dimers, which is reproduced at 87% and 79% success rate, respectively. Success
rate for other oligomeric classes varies from 66% to 100%, however these fig-
ures are less indicative because of too few structures present. Overall, 81% of
automatic an manual classifications agree with each other.

The most frequent misclassifications in Table 3 are dimers instead of tetra-
mers, then monomers instead of dimers and vice versa. These are special cases
when a larger assembly may or may not be divided in two parts. A detail study
of the misclassifications reveals that in most of them ΔGdiss lies within ±5
kcal/mol, the same uncertainty as that found for the benchmark set. A few
strongest exceptions to this observation are shown in Table 4. Visual inspection
of these assemblies reveals a poor packing quality of their interfaces (except for
well-packed 1y6x and 1y7p), which fact could suggest classification into lower
oligomeric classes. However, our calculations show that, despite their topological
imperfectness, the interfaces represent pronounced hydrophobic patches. This
means that the interfaces may be stronger than visually appears, which makes
higher oligomeric states possible. A definite answer as to what the oligomeric
state actually is in these cases, as well as in cases with low |ΔGdiss|, may be
given only by experimental study.
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Table 4. The strongest misclassifications in Table 3. See text for details

PDB entry 1y6x 1ywk 1v7y 1wq5 2bh8 1y7p 1ylf

Assigned state 1mer 1mer 1mer 1mer 4mer 2mer 1mer
Calculated state 4mer 6mer 2mer 2mer 8mer 6mer 6mer
ΔGdiss, kcal/mol 16.5 9.9 9.0 15.3 9.2 36.1 16.2

6 Conclusion

We have described here a novel method for the calculation of biological units
from protein crystallography data. In difference of its predecessors, our method
is based on the stability analysis of all assemblies allowed by crystal symmetry
and geometry of unit cell. We estimate the free energy of dissociation using
theoretical models for free energy of protein binding and rigid-body entropy of
protein assemblies. This approach allows us not only to predict the multimeric
states and 3D arrangements of monomeric units with 80-85% accuracy, but also
to guess on the probable dissociation patterns of assemblies.

The described procedure is implemented as a web-server available at URL
given in the title of this paper. The server provides a detail summary of all
crystal contacts and monomeric chains, list of probable protein assemblies, as
well as searching for alike interfaces in the PDB archive.

Although our models neglect specific conditions, such as concentration and
pH, which may affect formation of assemblies, predictive power of the method
appears to be sufficiently high. Further studies are needed to improve the theo-
retical models of protein affinity and entropy change upon assembly formation.
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Abstract. We present a novel approach to define molecular similar-
ity and its application in virtual screening. The algorithm is based on
molecular surface properties in combination with a geometric encoding
scheme. The molecular surface is described by screening charges calcu-
lated via COSMO. COSMO, the COnductor-like Screening MOdel, is a
quantum-chemical molecular description originally developed and widely
validated for solubilities and partition coefficients of molecules in the
liquid state. The screening charges it calculates also define properties
relevant to ligand-target binding such as hydrogen-bond donors and ac-
ceptors, positive and negative charges and lipophilic moieties from first
principles. Encoding of properties is performed by three-point pharma-
cophores which were found to outperform other approaches. The simi-
larity measure was validated on a dataset derived from the MDL Drug
Data Report (MDDR) which comprises five classes of active compounds
that are 5HT3 ligands, ACE inhibitors, HMG-CoA reductase inhibitors,
PAF antagonists and TXA2 inhibitors. Compared to other approaches,
the method presented here compares favorably with respect to the num-
ber of active compounds retrieved, finds different active scaffolds and
is based on a solid theoretical foundation. Further work will be under-
taken in order to find better shape and pharmacophoric feature encoding
schemes as well as to make quantitative predictions of bioactivity.

1 Introduction

Molecular similarity searching is based on the ”similar property principle” which
states that structurally similar molecules tend to have similar properties more
often than structurally dissimilar molecules [1,2,3]. While, generally speaking,
this assumption holds true exceptions lurk behind every structural modification.
In particular different behavior between physicochemical properties and bioac-
tivity can be observed. While physicochemical properties such as logP show - to
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a certain extent - indifference as to the precise location of structural change, ge-
ometrically restrained binding sites impose additional, spatial constraints on the
molecule. Identical substitutions may thus give rise to a wide range of changes in
bioactivity, depending on the site of substitution, the particular ligand (and its
binding mode) and the particular target. The effect of a modification on bind-
ing depends functionally on whether the group leads to steric repulsion (rapidly
decreasing or even completely eliminating bioactivity), fills an additional hy-
drophobic region of the binding site (increasing activity to varying degrees due
to induced dipole interactions), forms a charge interaction (greatly influencing
activity, depending on whether the interaction is attractive or repulsive) or just
points into surrounding bulk water, often having no profound effect on binding
affinity. Not knowing the effect of structural modifications on ligand binding is
one of the most severe limitations of the ”similar property principle”.

Molecular similarity searching involves at least two steps which are on the
one hand the structural representation of the molecules to be compared in ”de-
scriptor space”, and on the other hand a similarity or distance measure between
representations to establish a numerical similarity value between structures. Op-
tionally, feature selection [4,5,6,7] may be employed, whose aim is to increase the
signal-to-noise ratio of molecular representations by focusing on features relevant
to the searching task.

Conventionally, similarity measures are distinguished by their dimen-
sionality. Thus, one-dimensional properties such as logP or molecular weight
assign only a globally derived real- or integer valued number to the molecule
[8]. Two-dimensional properties such as fragment-based approaches [6,9,10] or
graph-based multiple point pharmacophores [11] derive the descriptor space rep-
resentation from the connectivity table. Finally, three-dimensional descriptors
use energy values assigned to points in space such as CoMFA [12], GRIND [13]
and MOLPRINT 3D [14] or spatial three-point pharmacophores [15,16].

The controversy of employing 2D vs. 3D descriptors for similarity searching
has been ongoing for years. Earlier work [17] found in particular MACCS keys to
be information-rich descriptors for predicting a variety of molecular properties
(mainly physicochemical properties such as logP and pKa). For diversity selec-
tion, 2D descriptors were found to outperform their 3D counterparts [18]. The
relationship between 2D and 3D descriptors has also been analyzed systemati-
cally [19] with the finding that 2D descriptors in some cases neglect important
features. Overall the general conclusion can be drawn that 2D descriptors per-
form well in cases where distinct topological features are responsible for biolog-
ical activity (and, conversely, perform more poorly where those features are not
available). 3D descriptors on the other hand often have the advantage of being
able to retrieve more topologically diverse molecules which still show the same
biological activity.

Of crucial importance when developing a similarity measure is its effective-
ness which means the reliable identification of active compounds. In addition at
least two other properties are desirable in molecular similarity searching, namely
the ability to identify novel active scaffolds (often referred to as ”scaffold hop-
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ping”) and the identification of molecular features deemed to be responsible for
biological activity (”back-projectability”). Scaffold hopping is desirable both to
circumvent current patents, and to identify novel lead structures which might
confer improved bioactivity or ADME/Tox properties. Back-projectability is a
valuable source of information in the lead development process, where, among
others, activity optimization is performed. The medicinal chemist, if told that a
particular lipophilic (or other) moiety at a certain site is important, may exploit
this knowledge to synthesize more active analogues in the next round of lead
optimization.

According to the idea that ligand-target interactions are mediated via inter-
actions of the two molecular surfaces, localized surface point environments [14]
have previously been used in combination with GRID [13,20] derived energetic
molecular surface properties for similarity searching. Several different molecu-
lar probes were employed in order to capture areas of the molecular surface
which correspond to putative ligand-target interaction types, such as hydrogen
bond donors and acceptors, positively and negatively charged surface areas and
lipophilic moieties. Still, force-field (such as GRID) derived descriptors possess
several serious shortcomings. A number of different probes need to be used to
ensure that different interaction types are covered sufficiently. This increases the
time needed for descriptor generation as well as introducing a degree of arbi-
trariness into the choice of probes. Also, force fields conceptually only employ
approximations of molecular properties, such as point charges which do not ac-
count for the directionality of lone pairs. They also do not capture sufficiently
other properties of the electronic structure such as polarizability and they de-
pend on a parameterization performed using a particular (arbitrary) data set.

The sum of those shortcomings led us to believe that a quantum-mechanical
method for the description of molecular surfaces may be more appropriate since
it eliminates all of the points above, of course bought at higher computational
expense. In this work screening charges of the molecular surface are calculated by
the COSMO [21] methodology and capture potential intermolecular interactions
via a calculation of screening charges on the molecular surface. COSMO provides
a set of surface patches, typically in the order of several thousand patches for
a small molecule, with associated surface screening charges. In the COSMO
extension to Realistic Solvation (COSMO-RS) [22,23,24] the special importance
of the surface screening charge den sity for electrostatic interactions, hydrogen
bonding and interactions of lipophilic regions has been elucidated.

It should be noted that in the work described here only a single AM1-
optimized low-energy conformation was employed to form the query. While con-
formationally flexible searching has recently become popular, the extent to which
it improves searching performance is difficult to establish [25]. This is probably
due to the fact that the addition of conformational information also introduces
noise into the descriptor, overall not necessarily improving the signal-to-noise ra-
tio. Following the most straightforward route we thus chose the AM1 optimized
structure of every compound to derive its representation in descriptor space.
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The following chapter describes briefly the background of COSMO and
COSMO-RS, the encoding scheme used for descriptor generation and the molec-
ular database employed. Results are presented and discussed in the subsequent
chapter. Finally, we give our concluding remarks about the performance of the
method and envisaged future work.

2 Material and Methods

2.1 COSMO-Derived Screening Charges and Their Relevance for
Molecular Interactions

The COnductor-like Screening MOdel [24] is a very efficient and robust approx-
imation of the dielectric continuum solvation models [26] which is available in
many quantum chemical programs. Based on a cavity grid of m surface segments
it calculates the polarization by the screening charges of dielectric continuum rep-
resenting the solvent by the electrostatic field and solute from a scaled conductor
boundary condition:

f(ε)Φsolute + A−1q = 0

where Φsolute is the vector of the electrostatic solute potential arising on the m
segments of the cavity, q is the vector of the screening charges on the m segments,
A is the Coulomb matrix of the surface segments, and f(ε) is the a scaling factor
depending on the dielectric constant of the medium:

f(ε) =
ε − 1

ε + 0.5

The solute potential Φsolute is calculated by quantum chemical methods,
where density functional methods have proved as most efficient and reliable.
Since the screening causes back-polarization of the solute by the solvent, the di-
electric screening has to be taken into account self-consistently in the quantum
chemical calculation. If efficiently implemented as on DFT level in TURBO-
MOLE [27,28], COSMO calculations can be performed with only small com-
putational overhead compared with gas phase calculations, including consistent
geometry optimization in the presence of the dielectric solvent.

Starting from a fundamental criticism of the oversimplified dielectric contin-
uum solvation concept, Klamt developed a statistical thermodynamics extension
of the COSMO model named COSMO-RS [24,29]. In this model the interac-
tions of molecules in a liquid phase are expressed as local contact energies of
the molecular surfaces. Here, the COSMO screening charge densities s, which
are the surface charge densities resulting from the set of surface charges q in
eq. 1, play the key role for the quantification of electrostatic, hydrogen bonding,
and hydrophobic/lipophilic interactions. While originally developed and widely
validated for environmental and chemical engineering mixture thermodynamics,
the value of the σ-based COSMO-RS concept for the quantification of many



Molecular Similarity Searching Using COSMO Screening Charges 179

Fig. 1. COSMO-derived screening charge densities σ of an HMG-CoA reductase in-

hibitor. Hydrogen-bond acceptor features as well as negative charges are encoded in

red while blue color denotes hydrogen-bond donor potential. Lipophilic moieties are

colored in green.

ADME properties such as solubility, blood-brain barrier penetration, intestinal
absorption, and even for pKa prediction has also been demonstrated [29,30]. Fur-
thermore, first applications of the COSMO-RS concept to the evaluation of drug
receptor binding are currently being developed. Thus COSMO screening charge
densities are likely to provide a sound foundation for investigating ligand-target
interactions from first principles.

The relevance of screening charges calculated by COSMO to molecular bind-
ing is illustrated in figure 1 for an HMG-CoA reductase inhibitor (statin). As
known from crystal structures, binding of statins to HMG-CoA reductase is me-
diated by charge interactions of a carboxylic acid group of the ligand as well as
hydrogen bond acceptor functions to the pyruvate-binding site of HMG-CoA. In
addition a lipophilic function of the ligand is required which binds to a floppy
lipophilic pocket of the target protein. All these features can be well distin-
guished from the COSMO screening charge densities σ, as illustrated in figure 1.
The carboxylate function is shown on the right in red and purple, while hydro-
gen bond acceptor functions can readily be identified at the bottom of the same
chain. Hydrogen bond donor functions point towards the viewer and are shown
in blue while the lipophilic bulk of the structure is given in green color.

2.2 Encoding of Surface σ-Values as Three-Point Pharmacophores
(3PP)

COSMO screening charge densities σ were encoded as atom-based three-point
pharmacophores (3PP) [15,16]. By projection back on the associated atom cen-
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ters average σ-values were calculated for each heavy atom and hydrogens at-
tached to elements other than carbon. Atoms with average screening charge
densities σ > 0.014 e/Å2 were classified as bearing strongly negative partial
charge (type N) and those with average charge densities 0.014 e/Å2 ≥ σ > 0.009
e/Å2 as hydrogen-bond acceptors (A). Negative screening charge densities were
associated with atoms showing strongly positive partial charge (P) at σ < -0.014
e/Å2 and hydrogen-bond donors (D) at -0.014 e/Å2 ≤ σ < -0.009 e/Å2. Atoms
with intermediate screening charge densities were classified as lipophilic atoms
(L). This results in features broadly in agreement with chemical intuition such
as that the doubly bound oxygen of an ester group but not its neighboring sp3

hybridized oxygen possesses hydrogen-bond acceptor properties. Eight bins were
used to encode geometry of the putative pharmacophore triangles, starting at 2
and employing bin borders at 3.5, 5, 6.5, 8, 9.5, 11, 13 and 15 Å. Triangles were
rotated to a unique orientation before encoding was performed. Triangle counts
were kept and molecules were compared using a Tanimoto-like similarity coeffi-
cient [3] which divides the number of matching features by the total number of
features present to give a similarity value in the range [0; 1] and also taking into
account the size of the structure.

2.3 Molecular Database Used

For evaluation of the algorithm, 957 ligands extracted from the MDDR database
[31] were used. The set [32] contains 49 5HT3 Receptor antagonists (from now
on referred to as 5HT3), 40 Angiotensin Converting Enzyme inhibitors (ACE),
111 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase inhibitors (HMG),
134 Platelet Activating Factor antagonists (PAF) and 49 Thromboxane A2 an-
tagonists (TXA2). An additional 547 compounds were selected randomly and
did not belong to any of these activity classes. This dataset has previously been
evaluated by Briem and Lessel [32] employing virtual affinity fingerprints, sev-
eral 2D fingerprints and Feature Trees as well as on fragment-based descrip-
tors (MOLPRINT 2D) [6,7] and force field-derived surface point environments
(MOLPRINT 3D) [14,33]. Its wide use renders this dataset a suitable similarity
searching benchmark, while restrictions are its rather small size, the compara-
tively small number of activity classes and the database they are derived from,
the MDDR database, which includes a high number of analogue structures and
no information about inactivity of compounds. Similarity searching performance
was established as the number of structures from the same activity class as the
query, as found among its ten nearest neighbors [32]. Similarity searching was
repeated ten times and the hit rates obtained were averaged.

2.4 Computational Details

Structures were exported from the MDDR database in SD format. Protonation
states were assigned using MOE [34], subsequently 3D structures were generated
using CORINA [35]. Geometries were optimized with AM1/COSMO followed
by a single-point BP-SVP-DFT/COSMO calculation using TURBOMOLE [28].
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Screening charges of surface elements were translated into three-point pharma-
cophores by a Perl script. Geometry optimization required approximately 10
minutes per compound on a 3 GHz CPU. While we chose COSMO calculations
on such a high level for this initial study, it should be noted that a recently
developed, very fast screening method COSMOfrag [30] can reduce the compu-
tational cost to as little as one second per compound if required for large scale
screening projects.

3 Results and Discussion

Hit rates and enrichments achieved on the five classes of active compounds are
given in table 1, together with the standard deviation of the hit rate for the
different queries. The hit rate is defined as the number of compounds from the

Table 1. Average hit rates, enrichment factors and standard deviations for the five

classes of active compounds

Dataset All Hetero-H Hetero-H Except NH

Hitrate Enrichment σ (Hitrate) Hit Rate Enrichment σ (Hitrate)

5HT3 4.9 14.0 3.5 5.6 11.2 3.3

ACE 5.1 7.6 4.1 5.6 13.7 2.8

HMG 5.2 5.8 3.8 9.1 7.9 0.9

PAF 5.1 5.2 3.1 7.0 5.0 1.9

TXA2 4.9 9.4 2.7 4.7 9.4 2.7

Mean 5.0 7.3 3.4 6.4 8.1 2.3

Fig. 2. Comparison of retrieval rates obtained by COSMO-based three-point pharma-

cophores to established methods. While hit rates achieved are superior to other meth-

ods, the added value of the method presented here lies in the type of active structures

retrieved.
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Table 2. Structures identified via COSMO screening charge densities σ in combination

with a three-point pharmacophore encoding scheme. The query 5HT3 ligand is shown

at the top.

Rank
(Tc)

Structure Rank
(Tc)

Structure

1 (1.00)
active

6 (0.56)
inac-

tive

2 (0.55)
active

7 (0.57)
active

3 (0.59)
active

8 (0.54)
active

4 (0.57)
active

9 (0.54)
active

5 (0.56)
active

10
(0.51)
active
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same activity class as the query among its ten most similar compounds (nearest
neighbors). The enrichment given is the ratio of the hit rate obtained by em-
ploying COSMO/3PP, divided by the hit rate expected from random selection.
In the first case all hydrogens bonded to heavy atoms except carbon were kept,
in the second also hydrogen atoms bonded to nitrogen were neglected.

Considering all hydrogen atoms bound to heavy atoms except carbon as pu-
tative pharmacophore points the hit rate for all classes is around 5 (between 4.9
in case of the 5HT3 and TXA2 datasets and 5.2 in case of the HMG dataset),
giving an average hit rate of 5.0 and enrichments of about 5- to 14-fold. If only
hydrogen atoms bound to heavy atoms other than carbon and nitrogen are con-
sidered, performance improves to a mean hit rate of 6.4, corresponding again
to enrichments of between 5- and 14-fold. Performance is compared to estab-
lished methods in figure 2. The average hit rate of 6.4 active compounds in the
first 10 structures of the ranked list is slightly better than Daylight fingerprints
while not achieving performance of 2D-information based Feature Trees [36] and
MOLPRINT 2D fingerprints [6,7]. This is in agreement with earlier results on
the information content of 2D and 3D descriptors [17] although it should be
noted that the difference remains small and probably not relevant in practice.

Still, the method presented here possesses a major advantage over many
2D based methods that is its ability to retrieve active compounds with widely
different scaffolds. An example is given in table 2 for the 5HT3 dataset. If the
query shown at the top of the table is used to rank the database of the remaining
956 structures, nine out of the ten most similar compounds retrieved indeed bind
to at least one of the serotonin receptor subtypes. Shown are ranking positions
with similarity scores and activity class. The compound retrieved at position
1 is identical to the query (but contained twice in the MDDR database) and
the method gives a reproducible descriptor, assigning a similarity value of 1 to
it. Compounds found at positions 1, 2 and 3 retain the scaffold, while those
at positions 4 and 5 retain the amide and heterocyclic structure of the query.
Structures retrieved at positions 7 and 8 already identify novel active scaffolds
while those at positions 9 and 10 of the list display completely novel spiro- and
bicyclic ring systems.

4 Conclusions

We have shown here that COSMO screening charge densities can successfully
be employed for virtual screening and provide a conceptually sound as well as
intuitively accessible scheme for calculating putative ligand-receptor interaction
types. Retrieval rates are comparable to 2D fingerprints while considerably more
diverse compounds are identified. Further work will employ a larger database for
evaluating virtual screening performance. In addition novel encoding schemes are
to be used since atom-based three-point pharmacophores can be assumed not to
fully exploit the information content contained in the screening charge densities
σ calculated on the molecular surface. One example are hydrogen-bond acceptor
atoms, whose directionality is well captured by σ, yet neglected in the atom-
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based encoding scheme used here. In addition the possibility of quantitative
activity predictions will be investigated.
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Abstract. We investigate the impact of receptor flexibility with the
all-atom FlexScreen docking approach using the thymidine kinase (TK)
receptor as a model system. We study the screening performance when
selected side chains of the target are treated in a continously flexible fash-
ion in a screen of a database of 10000 compounds, which contains ten
known substrates for the TK receptor. While the binding modes of the
known substrates are not significantly affected as a function of receptor
flexibility the mean binding energies of the database screen initially drop
rapidly with increasing receptor flexibility but saturate when the number
of target degrees of freedom is increased further. We demonstrate a dra-
matically increased diversity of the screen as 40% newly selected ligands
appear in the top 500 ligands of the screen when receptor flexibility is
taken into consideration.

1 Introduction

Virtual screening of a chemical database to targets of known three-dimensional
structure is rapidly developing into a reliable method for finding new lead can-
didates in drug development [1,2,3]. Both better scoring functions [4] and novel
docking strategies [5,6] contribute to this trend, although no completely satis-
factory approach has been established yet [7]. This is not surprising since the
approximations which are needed to achieve reasonable screening rates impose
significant restrictions on the virtual representation of the physical system.

Three important ingredients of a reliable in-silico screening approach, based
on the direct approximation of the affinity in an all-atom force field, can be identi-
fied: (1) The docking algorithm has to find the global minimum of the potential
(or free) energy surface within the given conformational space in an accurate
and reproducible manner. (2) All relevant conformations of the receptor-ligand
complex in nature must be accessible in the virtual representation of that sys-
tem. While ligand flexibility is now considered in most docking tools, the in-
clusion of receptor degrees of freedom has become the focus of recent investiga-
tions [8,9,10,11,12]. (3) The scoring function, which approximates the free energy
change from the free ligand to the receptor-ligand complex, should approximate
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the experimental affinity or at least the relative ranking of a compound database
accurately as possible.

Present day screening methods necessarily contain approximations for each
of the above ingredients to permit the treatment of large ligand databases with
an acceptable computational effort. One of the main obstacles to improve the
overall reliability of in-silico screening methods is the difficulty associated with
the consideration of target flexibility, which presently remains at an experimental
stage. Several approaches have been suggested to include more than one recep-
tor structure to the screening simulation: (1) Induced fitting: Once the ligand is
docked into a (rigid) receptor, the side chains are allowed to relax and to find
the optimum binding mode [10]. (2) A conformational ensemble of several differ-
ent structures of the target is employed to either generate Boltzmann-weighted
grids for the scoring function [11] or to define a united protein description [12].
In the latter approach, similar parts of the structures are merged whereas dis-
similar areas are treated as separate alternatives and are combined during the
docking process to form new overall structures. Although each of these tech-
niques has been shown to deliver results superior to the rigid-target docking
methods, their limitations are obvious: With the induced fitting approach only
small structural variations can be taken into account. If the side chain would
have to to be significantly moved from the starting structure to make the ligand
fit, it might have been discarded during the docking stage. Using conformational
ensembles, the proper choice of the different target structures is critical. This
approach is best suited when several crystallographic structures of the receptor
are available, otherwise it is difficult to define an ensemble which exhaustively
covers the critical area of the conformational space, but remains small enough
to avoid a combinatorial explosion of the number of possible conformations. Re-
cent approaches have become more sophisticated in their construction of target
conformations [13] and their combination [14] to address these problems.

In this investigation we moved toward the unconstrained consideration of
receptor flexibility by allowing selected side chain bonds to rotate continously.
Using our docking tool FlexScreen [15,16,17], we start with a rigid receptor and
then gradually enable up to 15 selected side chain bonds to rotate, thereby
investigating selectivity and accuracy of the screening simulations. We analyze
the benefits of this approach and its impact on both screening reliability and
computational cost.

By docking a database of 10000 molecules we demonstrate an increasing di-
versity of the selected ligands with the number of flexible target bonds. The
fraction of binding ligands increased from 28% for the rigid receptor to 65%
with 15 flexible bonds were released. We found that with increasing target flex-
ibility stiffer ligands of larger size were able to fit into the receptor pocket and
find competitive binding modes. The energy fluctuations of the docking simula-
tions increased with the dimension of the conformational space, but the docking
results appeared to saturate at about 10 receptor degrees of freedom. It is there-
fore advisable to balance the number of flexible bonds in the target against to
computational cost of the screen. The FlexScreen methodology reported here
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removes one of the most significant physical limitations of present day screening
methods and thus offers a platform for the improvement of lead selection with
moderate additional computational cost.

2 Method

2.1 Docking Method

The screens in this investigation were performed with FlexScreen, an all-atom
docking approach [15,16] based on the stochastic tunneling method [18]. In this
approach receptor and ligand are represented in atomistic detail, the global min-
imum of the energy surface is located using the stochastic tunneling method
(STUN) [18,19].

We used a simple, first principle based atomistic scoring function:

S =
∑(

Rij

r12
ij

− Aij

r6
ij

+
qiqj

ε rij

)
+
∑

h−bonds

cos Θij

(
R̃ij

r12
ij

− Ãij

r10
ij

)
(1)

which contains the empirical Pauli repulsion (first term), the Van de Waals at-
traction (second term), the electrostatic Coulomb potential (third term) and the
angular dependent hydrogen bond potential (term four and five). The Lennard-
Jones parameters Rij and Aij were taken from OPLSAA [20], the partial charges
qi were computed with InsightII and esff force field, and the hydrogen bond pa-
rameters R̃ij , Ãij were taken from AutoDock [21]. The dielectric constant was
chosen as ε = 4, which reduces the relative importance of Coulomb interaction
against hydrogen bonds.

The scoring function in equation (1) is neglecting solvent related effects.
Even in its simplest approximation the affinity of the ligand is the sum of the in-
vacuo binding energy, the de-solvation energy of the ligand and the de-solvation
energy of the receptor. Investigations are under way to extend the present scoring
function in order to account for these effects.

Each simulation run consisted of a total number of 8 × 105 steps using the
STUN optimizer. These simulation steps were partitioned following a cascadic
strategy [17]: 100 short simulations of 5000 simulation steps led to 100 confor-
mations, the 5 best of which were selected for another 30000 simulation steps.
Finally, the 2 best conformations were further optimized using another 75000
steps each. This cascadic approach was shown to reduce the chance of false neg-
atives, and as a side effect, it delivers two final conformations whose energies
can be employed to estimate the accuracy of the docking simulation (Sec. 3.1).

2.2 Receptor

For this investigation the thymidine-kinase (TK) receptor in complex with its
substrate ganciclovir (pdb entry 1ki2 [22]) was used as a model system. This
system was used as a benchmark in several recent docking investigations [7,17]
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since crystal structures for 10 important substrates in complex with the receptor
are available. Throughout this investigation the notation from Ref. [7] is used.
The whole receptor is used for the screeing run: The protein was first proto-
nated and partial charges were attached using InsightII and its esff forcefield.
The proper treatment of conserved water molecules remains a disputed topic.
Although the importance of specific water molecules involved in water-mediated
contacts has been demonstrated for some TK ligands [23], it was found that
the inclusion of these molecules during database screens did prevent docking of
ligands which otherwise had displaced them [24]. We have therefore chosen to
neglect the treatment of water molecules in this study until a proper treatment
of solvation/de-solvation effects is available and the positional flexibility of the
water can be taken in account.

We performed several simulations with an increasing degree of sidechain flex-
ibility. A close inspection of the docking site of 1ki2, which is prototypical for the
TK receptor, revealed that 14 side-groups were located within a 3 Å vicinity of
the docked ligand gcv. Seven of them were identified to exhibit some structural
variations when the crystallographic structures of various receptor conformations
were compared. Based on these data, the five bonds most likely to account for
conformational screening were made flexible in the first non-rigid screen (SIM5).
To investigate convergence we performed further screens with 10 and finally
with 15 free rotating bonds. More specifically, the following bonds were allowed
to rotate in the respective simulations: simulation:

– SIM0; Fixed side-groups
– SIM5; 5 rotatable bonds: HIS A58 CB–CG, GLN A125 CG–CD, GLU A225

CG–CD, CB–CA, CG–CB
– SOM10; 10 rotatable bonds: SIM5 2 plus HIS A58 CA–CB, GLU A83 CG–

CD, TYR A101 CZ–OH, TYR A172 CZ–OH, ARG A222 CA–CB
– SIM15; 15 rotatable bonds: SIM10 plus TYR A101 CB–CG, TYR A172

CB–CG, ARG A222 CB–CG, CG–CD, CD–NE

For each particular set of sidechains, all single bonds of the side chain are per-
mitted to rotate continously. These rotations are achieved by random changes
of the dihedral angles in each simulation step. Using standard off-the-shelf hard-
ware (PC XEON 2.2 GHz), FlexScreen requires about 20s docking time per
ligand. As the number of sidechain degrees of freedom rises, longer runs are
required and the cost of an energy evaluation increases. For 15 flexible bonds
a single simulation can take as much as 10 minutes. However, the present im-
plementation of FlexScreen recomputes all interactions involving atoms on the
flexible sidechains in each energy evaluations. Restricting the evaluation to just
the atoms that actually move can reduce in computational savings by a factor
of three on average.

2.3 Ligand Database

The ligands were taken from the open part of the National Cancer Institute
(NCI) database, nciopen3D [25], which, in its latest version, contains 249061



190 B. Fischer, H. Merlitz, and W. Wenzel

Table 1. Ranks of the 10 tk-inhibitors when screened against 10000 compounds. Each

ligand was docked 32 times, Ebind is the average binding energy, Δ its root-mean-

square deviation (nd indicates non-docking ligands). Emean denotes the average of

binding energies over all docked inhibitors. The score of the screen (bottom row) is a

measure for the selectivity of the screen.

Nflex = 0 Nflex = 5 Nflex = 10 Nflex = 15
Ebind Δ Rank Ebind Δ Rank Ebind Δ Rank Ebind Δ Rank

gcv -129 3 7 -147 4 8 -172 6 7 -169 9 21
acv -115 5 31 -119 2 118 -129 8 245 -142 6 190

dhbt -116 6 29 -153 8 5 -160 7 18 -158 6 49
hpt -113 1 42 -120 7 110 -134 6 186 -142 6 187
pcv -98 10 178 -132 5 35 -133 9 189 -143 8 180
dt -68 3 901 -96 3 549 -109 6 878 -123 7 606

idu -58 3 1313 -104 3 341 -111 7 735 -122 6 624
ahiu nd -53 1 2380 -98 10 1588 -97 6 2113
mct nd nd -73 10 3738 -66 6 4668

hmtt nd nd -56 3 4929 -64 7 4793

Emean -99.6 -115.5 -117.5 -122.6

compounds and represents the largest freely available ligand database. For this
investigation 10000 ligands (which contain at least one ring [17]) with the fol-
lowing properties were randomly chosen from the database: (1) The number of
atoms N was restricted to 20 ≤ N ≤ 80. (2) The number of rotational degrees
of freedom was restricted to R ≤ 12. (3) Charged ligands were discarded.

3 Results

3.1 Screening Results

The experimentally determined conformation of inhibitor ganciclovir in docked
position (pdb entry 1ki2 [22]) served as a measure of the docking accuracy. Each
of the 128 simulations led to rms deviations below 1.5Å and thus to a successful
docking, underlining the high level of reliability of the docking algorithm.

The degree of scattering in the binding energies of the docked conformations,
however, increased with the target flexibility (see also Table 1). It therefore
appears that these energy fluctuations are a more sensitive measure for the
accuracy of the docking procedure. After all, in a database screen, it is the
affinity which finally decides upon a ligand to become a suitable lead candidate
or not.

The first striking result is that the number of docked compounds had signif-
icantly increased from 28% (rigid target) to around 64% (10 and more flexible
bonds). With increasing flexibility, sterical restrictions became more and more
relaxed, allowing compounds to dock which were previously unable to fit into
the receptor pocket. Additionally, binding modes were optimized for a better fit:
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Fig. 1. Correlation of binding energies with compound flexibility for rigid target (upper

left), 5, 10 and 15 target degrees of freedom (upper right, lower left, lower right). The

area of the rectangle at each position is proportional to the number of ligands with the

given number of degrees of freedom found in the screen with the corresponding binding

energy.

The average binding energy of the docked compounds decreased as a function of
receptor flexibility from -54 kJ/Mol (rigid receptor) to -77 kJ/Mol (10 flexible
bonds), but appeared to saturate after that. The transition from 10 to 15 degrees
of freedom caused a rather modest change of -4.5 kJ/Mol.

The two-dimensional plots of Fig. 1 show a breakup of the binding energies
with respect to ligand flexibility. With a rigid receptor (upper left panel), a
clear relation between both variables is visible: few inflexible ligands reached
binding energies below -100 kJ/Mol. The best binding modes were achieved
with ligands from 4 to 9 flexible bonds, beyond that a fast drop took place.
At 10 and 15 target degrees of freedom (lower left and lower right) the binding
energies not only improved in general, but their relation to ligand flexibility had
also disappeared.

This behavior is related to the fact that a fixed target is highly selective:
Only ligands with internal flexibility were able to fit into the receptor and find
a proper binding mode, whereas for inflexible ligands the conformational space
was too restricted for a tight binding. With increasing target flexibility, those
restrictions were relaxed and this allowed ligands with few degrees of freedom to
compete more successfully with rather flexible compounds. On the other side,
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Fig. 2. Distribution of energy differences ΔE between the two best conformations of

each docked ligand with 10 target degrees of freedom. Solid line: Fit of two negative

exponentials Eq. (2).

the rigid target imposed a rather strict limitation to the size of the compounds.
Only after inclusion of target flexibility, ligands with more than 40 atoms were
docking well, and among those was the majority of ligands with 10 and more
flexible bonds. This plot is an impressive demonstration on how target flexibility
contributes to overcome sterical restrictions and increase the diversity of the
database screen.

In order to determine the accuracy of the database screens, we analyzed their
energy fluctuations. The cascadic docking approach delivers two different final
conformations. The difference ΔE of their binding energies can be plotted for all
docked ligands to yield the energy-difference distribution, the width of which is
an indicator for the reliability of the screen. As has been argued elsewhere [17],
this distribution can be interpreted as the energy-energy correlation function
and fitted to two negative exponentials

F (ΔE) = w1 λ1 e−λ1 ΔE + w2 λ2 e−λ2 ΔE (2)

yielding the inverse decay constants λ−1
i and the weight factors wi. Figure 2

displays such a fit for the simulation with 10 receptor degrees of freedom, and
table 2 summarizes the resulting values for the fit parameters. According to this
analysis, the set of docked ligands is formally partitioned into compounds of
high docking accuracy (creating the fast decay λ−1

1 ) and those of low docking
accuracy (decaying with λ−1

2 ). It is obvious how these energy fluctuations rapidly
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Table 2. Median energy difference (kJ/Mol), inverse decay parameters λ−1
i (kJ/Mol)(a

measure of the screening error) and weight factors w1/w2 for a fit of Eq. (2) to the

distribution of energy differences ΔE. Nflex is the number of flexible bonds of the tar-

get, Ndocked the total number of docked compounds, Emean denotes the mean binding

energy of all docked compounds.

Nflex 0 5 10 15

Median 0.23 1.41 3.06 4.50
λ−1

1 0.23 1.27 2.7 3.2
λ−1

2 2.3 7.8 9.7 9.8
w1/w2 4.3 2.2 1.4 0.58

Ndocked 2839 4047 6378 6540
Emean (kJ/Mol) -54.3 -60.0 -77.1 -81.6

increased with the number of target degrees of freedom. Not only the inverse
decay constants were increasing, but also their relative weights shifted: Whereas
in the fixed target the fast decaying compounds were dominating (w1/w2 = 4.3),
the situation was reversed at 15 target degrees of freedom: Here the slow decay
had a higher weight (w1/w2 = 0.58) and hence ligands of high docking accuracy
were outnumbered by those of low docking accuracy. The decreasing accuracy
could as well be expressed with the Median of the distribution, which was growing
from 0.23 kJ/Mol (rigid target) to 4.5 kJ/Mol (15 flexible bonds).

The last two rows of Table 2 contain the total number of docked compounds
and their mean binding energies. As mentioned above, these parameters were
beginning to saturate beyond 10 target degrees of freedom, i.e. a further increase
of target flexibility did not significantly improve the diversity of the screen any
more. The accuracy, however, continued to decrease so that it seems to be wise to
avoid any excessive flexibility of the target. Reasons for this decrease lie mostly in
the dramatically increasing size of the search space. Discounting internal ligand
degrees of freedom, the number of degrees of freedom doubles from five in SIM0
to ten in SIM10, with a corresponnding loss of efficiency of any applied search
method- In order to form a proper hydrogen bond between a free sidechain
and the ligand in a flexible receptor screen both fragments must coordinate
properly. Even efficient optimization methods, such as the stoichastic tunneling
method underlying FlexScreen, are reduced in their accuracy as the search space
dimension increases.

3.2 Ranking of Known Substrates

Each of the 10 inhibitors was docked 32 times and the mean as well as the rms-
deviations of the binding energies were evaluated. Table 1 contains the results
for the different stages of target flexibility. The ranking was determined using
the average binding energy of each inhibitor, not the best energy of the 32 runs.
The general trend is defined with an increasingly tight binding of the inhibitors
along with increasing target flexibility. This is shown in the lower row of the table
(second to bottom), containing the mean energies of all docked inhibitors. It is
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Fig. 3. Correlation of the ranks of the top 500 ranking database compounds of the

Nflex = 15 simulation (x-axis) against the ranks of the same ligands in a Nflex = 0

simulation (left) and in a Nflex = 10 simulation (right). 212 (4) of these 500 best

ligands did not dock at all during the Nflex = 0 (Nflex = 10) screen.

interesting to note how the average binding energy of the inhibitors is initially
dropping quickly (from -97 kJ/Mol down to -116 kJ/Mol) and then rather slowly
as a function of target flexibility.

Table (1) displays the binding energies of database compounds and inhibitors
for the various target models. The overall ranking of the ligands had improved;
expecially those which initially docked badly or not at all (ahiu, mct and hmtt)
had significantly improved once the receptor became flexible. The latter two of
them, however, never achieved a reasonably tight binding. It is striking how well
the database ligands had improved their binding energies. This is the reason why
the overall score of the inhibitors did not vary much, i.e. the selectivity of the
screen remained essentially unchanged with increasing target flexibility.

The overall shift of the database toward higher affinity requires closer in-
vestigation. If the inclusion of target flexibility results in little more than a
homogeneous shift of the binding energies of all ligands, there were little justifi-
cation for the increased computational cost of such screens. Closer inspection of
the data, however, reveals, that this is not the case. The data in the left panel of
Fig. 3 demonstrates a lack of correlation of the ranks of the top 500 ligands of
the Nflex = 15 in a screen with no target flexibility. We find that 212 of the 500
best ranking compounds in the flexible receptor screen did not dock at all when
the rigid target was used. Only the inclusion of target flexibility permits more
than 40% of the top ranking ligands to attain a competitive binding mode. All of
these molecules would have been discarded in a rigid receptor screen. The data
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also implies that a rigid receptor screen necessarily results in comparatively low
diversity. The particular receptor conformation used in such a screen, serves as
a sieve which only allows a highly restricted subset of ligands to find a proper
binding mode. As a result it may be misleading to interpret a particular good
score for the known substrate as an indication of the selectivity of the screening
methodology or scoring function. The right panel of Fig. 3 correlates the ranks
of the best 500 ligands with their ranks during the Nflex = 10 screen. Here the
correlations are much higher, indicating that the screening results saturate with
approximately 10 receptor degrees of freedom. Only 4 (0.8%) of the top 500 at
Nflex = 15 did not dock during the Nflex = 10 simulation.

4 Summary

Starting with a rigid target, we investigated the impact of increasing side-chain
flexibility on the docking performance during a database screen of 10000 ligands.
The target degrees of freedom were treated on the same continuous footing
as the ligand degrees of freedom. Using the X-ray crystallographic structure
of thymidine kinase complexed with the inhibitor gcv, as a blueprint for the
exact binding mode, we demonstrated that the binding pose remained almost
unchanged for various degrees of target flexibility.

By docking a database of 10000 molecules we demonstrate an increasing
diversity of the screens with the number of flexible target bonds. The fraction
of binding ligands increased from 28% for the rigid receptor to 65% with 15
flexible bonds were released. We found that with increasing target flexibility
stiffer ligands of larger size were able to fit into the receptor pocket and find
competitive binding modes.

The energy fluctuations of the docking simulations increased with the di-
mension of the conformational space. Beyond 10 target degrees of freedom the
docking results appeared to saturate with the number of receptor degrees of
freedom. It is therefore advisable to balance the number of flexible bonds in the
target against to computational cost of the screen.

We demonstrated that increasing target flexibility results in a significant in-
crease in the chemical variability of the ligands that find a competitive binding
mode. While this increase of ligand variability in flexible receptor screens is
highly desirable from the perspective of lead selection, it places a strong burden
on the scoring function to discriminate between the large variety of different
binding mechanisms. In the absence of perfect scoring functions, consensus scor-
ing of the docked ligands after the screen may ameliorate this problem, but
ultimately improved scoring functions may be required to further increase the
reliability of large database screens.

The FlexScreen methodology reported here removes one of the most signif-
icant physical limitations of present day screening methods and thus offers a
platform on which to develop such scoring functions. We noted that consider-
ation of a relatively small number of receptor degrees of freedom resulted in
a significant improvement of the screening results, a finding that we will vali-
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date for other receptors. Chemical intuition and the inspection of known binding
modes may aid the selection of such target degrees of freedom and permit the
improvement of lead selection with the FlexScreen approach with moderate ad-
ditional computational cost.
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Abstract. A new algorithm for multiple semi-flexible superposition-
ing of drug-sized molecules is described. It identifies structural similar-
ities between two or more molecules. To account for the flexibility of a
molecule, multiple conformers drawn from molecular ensembles gener-
ated by conformational analysis are used. To address the varying degree
of similarity among the molecules, similar substructures present in dif-
ferent subsets of the molecules are identified.

All molecules are compared to a preselected reference molecule. Clique
detection on the correspondence graph of two molecular structures is ap-
plied to generate feasible start transformations, which are used to com-
pute common substructures. The results of these pairwise comparisons
are efficiently merged using binary matching trees.

Despite considering the full atomic information for identifying multi-
ple structural similarities, the algorithm is well suited as an interactive
tool for exploring drug-sized molecules, and has been integrated into the
molecular visualization package AmiraMol. The algorithm’s capabilities
are demonstrated on two sets of molecules.

1 Introduction

In pharmaceutical drug design, one often faces the question, what properties a
drug (ligand) must have to bind to a specific receptor. In the absence of the
receptor structure, the only given information is a set of ligands for which we
know or assume, that they all bind to the same receptor using similar binding
modes. Beside the physico-chemical properties of the ligand, its form plays a
major role in the binding process. Hence, it is not enough to consider the two-
dimensional structure of the ligands, but one also needs to look at their three-
dimensional forms. In general, the active forms of the ligands are not known.
Therefore, the ligand’s flexibility needs to be taken into account.

There exist two classes of algorithms that account for the flexibility of the
ligands. The first class of algorithms keeps the ligands flexible during the com-
parison stage [1,2,3,4]. The advantage of this approach is that the search space is
not limited to a precomputed number of (generally) low-energy conformers. And
indeed, active conformers often have a slightly higher energy. However, this ap-
proach has two major disadvantages. First, the search space needs to be sampled
for each comparison. Second, one might end up with statistically very unlikely
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conformers. The second class of algorithms uses precomputed conformers to con-
sider the flexibility of the ligands, hence they are called semi-flexible algorithms.
Their advantage is that the conformers of each molecule need to be computed
only once, independent of the comparison to be accomplished, and thus a more
exhaustive conformational analysis can be carried out. Also, the development
of comparison algorithms using multiple conformers is uncoupled from sampling
the conformational space. The disadvantage is that the conformational space of
a molecule might be very large and one can easily generate thousands of differ-
ent conformers, posing the question, which conformers should be used for the
comparison. This problem arises, since the conformers are generated before and
not during the comparison.

Related work includes, e.g., rigid body alignment algorithms, trying to max-
imize some kind of volume overlap [5,6,7], and molecular surface alignment
approaches [8,9]. Good coverage of publications predating 1990 can be found
in [10,11]. Related work predating 2000 is excellently reviewed in [12].

The work most closely related to our approach is the multiple semi-flexible
superposition algorithm by Martin et al. [13]. They specify a reference molecule
to which all other molecules are pairwise aligned. Multiple conformers are consid-
ered separately. For the pairwise alignment they require pharmacophore points
to be specified which are matched using a clique detection method. The results
of the pairwise comparisons are finally merged to get multiple matchings. Since
the number of pharmacophore points in each molecule is considerably smaller
than the overall number of atoms, clique detection can easily be applied and
merging the results is relatively easy. In parts, our algorithm is based on the
work of Kirchner [14], who uses a greedy matching strategy to find the optimal
matching of any two conformers of two molecules. Since he is only interested in
the optimal matching between two molecules, he can apply a branch-and-bound
method to prune large parts of the search tree.

With our approach we try to bridge the gap between the work of Martin
et al. [13], which is fast, but uses only parts of the full structural information,
and very detailed, expensive algorithms which explore the full structural in-
formation, but either are not able to handle flexibility or cannot do multiple
superpositioning.

2 Algorithm

The algorithm requires to preselect a reference molecule R. Each reference con-
former Ri is compared separately to all query molecules Qk. This is done by
computing pairwise matchings (Sect. 2.1) of all conformers Qkl of the query
molecule Qk with Ri. The pairwise matchings between Ri and Qk are stored in
a matching tree Tik (Sect. 2.2). Next, all matching trees Tik are merged into a
single final matching tree Ti containing all matching clusters corresponding to
reference conformer Ri. In the last step, we compute the score values of all match-
ing clusters. By interpreting these values as vectors, we can sort the matching
clusters into Pareto sets (Sect. 2.3). The algorithm is sketched in Fig. 1.
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Fig. 1. Overview of the algorithm. The reference molecule is denoted by R, its con-

formers by Rj . The query molecules are denoted by Qi, their conformers by Qij . The •
symbol denotes the computation of pairwise matchings. Tij denotes the matching tree

containing all pairwise matchings between molecule Qi and reference conformer Rj . Ti

is the final matching tree comprising all multiple matchings (matching clusters) with

respect to Ri. Finally, Pi is a Pareto set containing multiple matchings of different

reference conformers.

2.1 Computation of Pairwise Matchings

The computation of pairwise matchings between two conformers, a reference
conformer Ri and a query conformer Qkl, is done in two steps.

First, we compute a set of rather small substructures common to Ri and
Qkl by applying clique detection [15] to the correspondence graph of the two
molecular structures [10]. Each clique in the correspondence graph represents a
single common substructure. For each clique, we compute a rigid transformation
by least-squares fitting [16] the respective substructures.

Before we describe the second step, we need to define the term pairwise
matching. Let m, n ∈ N\ {0}. A function M : {1, . . . , m} −→ {0, . . . , n} is called
a pairwise matching, or simply matching, if it meets the following property:
∀i, j ∈ {1, . . . , m} : M(i) = M(j) ⇒ i = j ∨ M(i) = 0. Furthermore, we define
the set M∗ := {i|M(i) �= 0}.

In the second step, we use each transformation generated in the first step as
start transformation for an iterative greedy point matching method [14]. In each
iteration we compute the optimal matching with respect to the current rigid
transformation T , i.e., the matching maximizing the weighted scoring function

score(A, B; M ; T ) :=
|M∗|

min(m, n)
· e−rms(A,B;M ;T ) , (1)
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Fig. 2. Complete matching tree for a reference molecule with three atoms. For example,

leaf a represents the empty substructure, whereas leaf d represents the substructure

with atoms 2 and 3.

where A and B are the atom coordinates of Ri and Qkl, respectively, M is a
matching, and rms is defined as

rms(A, B; M ; T ) :=

√∑
i∈M∗ w(i, M(i)) · ‖Ai − TBM(i)‖2

|M∗| , (2)

where w : {1, . . . , m} × {1, . . . , n} −→ R
+ is a weight function, which allows

us to favor atom pairs, such as donors or acceptors, or to penalize an atom
pair consisting of, e.g., a donor and a hydrophobic atom. If w(i, j) := 1.0, ∀i ∈
{1, . . . , m} and ∀j ∈ {1, . . . , n}, our scoring function is equal to the one used
in [17]. The transformation for the next iteration is computed by least-squares
fitting the substructures corresponding to the optimal matching.

2.2 Matching Tree

A matching tree is a binary tree used for storing matchings corresponding to
a single reference conformer. A matching tree allows to find all matchings cor-
responding to a given substructure in the reference conformer in time O(m),
where m is the number of atoms in the reference molecule. A matching tree
has depth m. Level 0 of the matching tree represents the root node, level i > 0
represents the i’th atom in the reference molecule. Each leaf corresponds to a
unique substructure of the reference molecule (see Fig. 2 for an example). The
maximum number of leaves is 2m. The path p = [p0, . . . , pm] from the root
to a leaf uniquely defines the substructure associated with the leaf: If atom i
of the reference molecule is contained in the leaf’s substructure, pi will be the
right child of pi−1, otherwise it will be the left child. Each matching is inserted
into the matching tree according to the matched substructure of the reference
conformer. Thus, two matchings Mx and My will be stored at the same leaf if
∀i : Mx(i) �= 0 ⇔ My(i) �= 0. For each leaf we maintain a sorted list of match-
ings. The substructure corresponding to a leaf can also be thought of as a bit
string, where the i’th bit is set to 1 if the i’th atom of the reference molecule is
in the substructure.

Two matching trees are merged in two steps. In the first step, we compute
the intersections of all substructures corresponding to the leaves of the first tree
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and all substructures corresponding to the leaves of the second tree and insert
these intersections into the first tree. If we take the bit string representation of
substructures, the intersection of two substructures is the result of the bitwise
AND operation of the two bit strings. If S is the substructure resulting from
the intersection of two substructures, and M is a matching of either matching
list of the two leaves associated with the intersected substructures, we define the
restricted matching MS as

MS(i) :=

{
M(i) if i ∈ S,

0 otherwise.
All restricted matchings resulting from intersecting two substructures are in-
serted in the first matching tree. In the second step, we insert all matchings of
the second tree into the first tree, if they are not already there.

Merging of the matching trees is done iteratively, i.e., we merge two trees
into one of them which is then merged with another one and so forth, until all
trees are merged into a single tree, the final matching tree.

The merging step drastically reduces the amount of work to be done when
bringing together matchings of different query molecules. Since in each merging
step the intersected substructures are inserted into the merged tree, substruc-
tures contained in multiple query molecules only need to be intersected once
during a single merging step.

2.3 Sorting of Matching Clusters

All restricted matchings gathered at one leaf of a matching tree build a matching
cluster. If there are several matchings of the same query molecule, we take the
one with the highest score. For each matching cluster, we compute a number
of measures, such as the number of query molecules in the cluster, the size of
the matching, and the averaged score value. If we want to sort the clusters
according to these measures using a single scoring function, we are faced with
the problem of assigning weights to the measures. We circumvent this problem
by considering the measure values as a vector and by using the concept of Pareto
dominance [18]. According to this concept, a vector u = (u1, . . . , uk) is said to
dominate vector v = (v1, . . . , vk) if and only if u is partially larger than v, i.e.,
∀i ∈ {1, . . . , k}, ui ≥ vi ∧ ∃i ∈ {1, . . . , k} : ui > vi. All vectors mutually not
dominating each other are assigned to the same so-called Pareto set. According
to the dominance of the vectors of different Pareto sets, we can define an order
on the Pareto sets.

3 Results

We tested the described algorithm on several groups of molecules. Unfortunately,
there are no benchmarks for superimposing molecules. Therefore, we chose two
groups that had previously been used for the assessment of superposition algo-
rithms and thus seemed well suited [4,9]. The first group consisted of a set of
four angiotensin II antagonists. For this group the active conformations were not
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Fig. 3. Structural formulas of the angiotensin II antagonists: Losartan, L-158,809, L-

159,894, and CV-11974 (from left to right)

Fig. 4. Stereo views of two matchings of four angiotensin II antagonists from the first

(top) and the second (bottom) Pareto set, respectively. The red wire-frame cubes denote

the common substructure. The numbers denote the same rings as in Fig. 3.

available. We therefore computed the metastable conformations [19] for each of
these molecules and used representatives of these conformations as input to our
algorithm. The second group consisted of seven thermolysin inhibitors. For this
set of molecules the active conformations were available from the PDB (Protein
Data Bank) [20], and thus we used these as input to the algorithm.

All computations were performed on a PC workstation with 3GHz processor.
The implementation was done in C++, and the source code was integrated into
the visualization software AmiraMol [21]. All images in this chapter were also
made with AmiraMol.

3.1 Angiotensin II Antagonists

The four angiotensin II antagonists considered here are Losartan, L-158,809,
L-159,894, and CV-11974. The two-dimensional structures as well as the nomen-
clature of these molecules were taken from [22]. The three-dimensional structures
were generated using CORINA [23]. These structures were used as input to the
program ZIBMol [19], which generated 20, 13, 13, and 25 metastable conforma-
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tions, respectively. From these metastable conformations we chose the structures
with minimum energy as input to our algorithm.

For the computation of the multiple structure superposition of the angio-
tensin II antagonists the following settings were used. The minimum clique size
was set to 5, i.e., we only used substructures with a minimum size of 5 to generate
start transformations. The distance threshold for the correspondence graph was
set to 0.2, and the minimum matching size was set to 15. We chose Losartan as
reference molecule.

325196 matching clusters were computed in 2 minutes. The large number of
matching clusters is due to the large similarity between the molecules which leads
to many slightly different matchings. Two matchings were selected, one from the
first and one from the second Pareto set, which are shown in Fig. 4. The two
matchings differ in the relative orientation of the imidazole ring of Losartan to
the double-ring of the other three molecules. In the first matching the second
nitrogen atom is not matched to the nitrogen atoms of the other molecules, in
the second matching the nitrogen atoms are matched. In both matchings the
imidazole ring as well as the aromatic rings are matched between all molecules.
Furthermore, the tetrazole ring of Losartan, L-158,809, and CV-11974 is matched
to the sulfonamide group of L-159,894. These groups are probably responsible
for forming hydrogen bonds to the receptor.

3.2 Thermolysin Inhibitors

The active conformations of seven inhibitors of thermolysin (TLN, EC-number
3.4.24.27) were compared with each other. These inhibitors were extracted from
the enzyme-inhibitor complexes found in the PDB: 1TLP, 1TMN, 3TMN, 4TMN,
5TLN, 5TMN, and 6TMN. The separated inhibitors were then parametrized us-
ing the Merck Molecular Force Field (MMFF) implemented in the program ZIB-
Mol. The parametrization was needed for assigning atom types (donor, acceptor,
hydrophobic, aromatic).



Multiple Semi-flexible 3D Superposition of Drug-Sized Molecules 205

Fig. 6. Stereo views of two matchings of thermolysin inhibitors. The wire-frame sur-

faces denote common substructures. Top: 7 inhibitors with a matching of size 12.

Bottom: 6 inhibitors (without 3TMN) with a matching of size 16.

For the computation of the multiple structure superposition of the seven
thermolysin inhibitors we used the same settings as for the comparison of the
angiotensin II antagonist except that we set the minimum matching size to 8.
We chose the 4TMN inhibitor as reference molecule. However, this choice was
somewhat arbitrary since we got similar results for the other inhibitors except
for that of 3TMN. This is due to the size of the 3TMN inhibitor, which is
considerably smaller and in particular misses the functional group responsible
for binding to the zinc ion in the active site.

The computation of the superposition took less than a second. 308 match-
ings were computed which were sorted into 70 Pareto sets. Two superpositions
from the Pareto optimal set, namely the one with all inhibitors and the one
with 6 inhibitors are shown in Fig. 6. Due to the size of the 3TMN inhibitor
and the absence of the functional group responsible for binding to the zinc ion,
the first matching size is considerably smaller with 12 atoms in contrast to 16
atoms.

Of special interest in the second matching is the zinc ion binding group.
For the 1TLP, 4TMN, 5TMN, and 6TMN inhibitors this region is identical,
consisting of a phosphor atom which two oxygen atoms are bound to. The 1TMN
and 5TLN inhibitors, however, differ in this region from the rest and between
each other. At the position of the phosphor atom, in the 1TMN inhibitor we find a
carbon which a COO- is bound to. This means that apart from the absence of the
phosphor atom, there is also an additional carbon atom which slightly dislocates
the oxygen atoms. This is similar to the 5TLN inhibitor, here, however, we have
an additional nitrogen atom inserted between the carbon and the oxygen atoms,
further dislocating one of the oxygen atoms. Despite this, the oxygen atoms were
correctly matched.
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4 Discussion

We presented a new algorithm for multiple semi-flexible superposition of drug-
sized molecules. Our algorithm is similar to DISCO [13] in two points. (1) A
reference molecule needs to be specified to which all other molecules are com-
pared. (2) The results of these pairwise comparisons are then merged to get
substructures present in all or many molecules. DISCO uses clique detection to
identify common substructures. Clique detection, however, is limited to rather
small sets of points. DISCO circumvents this problem by prespecifying a few
pharmacophore points which are used instead of all atoms. Our approach, in
contrast, uses the full atomic information. With clique detection we would only
be able to identify rather small common substructures. We therefore use a two-
step approach for the comparison of two molecular structures. In the first step,
clique detection is used to generate good start transformations. The second step
refines each start transformation and computes the matching. The matchings
found using this two-step approach are, in general, considerably larger than
those found by clique detection alone. However, the large matchings that we
get impose a new problem. Merging of the pairwise results becomes much more
expensive. We solve this problem by introducing matching trees.

We tested our algorithm on several groups of molecules. The results suggest,
that the new approach is very well capable of identifying common substructures
in a set of molecules. The algorithm depends on the computation of resonable
molecular conformers. However, the algorithm is fault-tolerant to the absence of
conformers by also computing substructures not present in all molecules.

The parameters of the algorithm allow the user to decide how thoroughly
the search for common substructures should be performed. A trade-off has to be
found between runtime and search detail.

In the future, the main focus will be on considering even more conformers per
molecule while keeping short runtimes. The runtime of our algorithm, however,
is mainly determined by the number of conformers per molecule. Exploiting
similarities between a molecule’s conformers might enable us to considerably
reduce the algorithm’s runtime, and, thus, it might allow for even more flexibility.

Acknowledgments. I would like to thank Johannes Schmidt-Ehrenberg and Frank
Cordes for helpful discussions and Peter Deuflhard for his continuous support.
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Abstract. We present an efficient and numerically robust algorithm for
solving the Smoluchowski equation (SE) to follow diffusive processes on
smooth and rough potential energy surfaces. The hierarchical nature of
the algorithm (hierarchical discrete approximation or HDA) allows to
fully explore the fine- and coarse-grained structure of the free energy
surface and can be extended to multidimensional problems. It is shown
that for free energy surfaces where the minima are separated by consid-
erable barriers the reaction kinetics can be captured using only a small
number of eigenvalues of the corresponding rate matrix which leads to
a considerable speedup of the computation. This technique, in combi-
nation with HDA, is applied to study the rebinding of carbon monoxide
(CO) to native myoglobin (Mb) and a mutated protein (L29F), a process
of fundamental importance in biophysics.

1 Introduction

The notion of smooth and structured (rough) energy landscapes is an important
concept in the discussion of dynamical processes in complex systems. Examples
include the folding of proteins, the reaction of two end-groups in a polymer chain
or the motion in bistable, metastable or periodic potentials. The stochastic dy-
namics on these landscapes is governed by the heights of the barriers between
the local minima which can be large. In protein dynamics one is usually inter-
ested in the way how an initial population of conformational substates relaxes
towards a steady state. A useful way to determine the reaction kinetics of such a
system is to follow the temporal and spatial relaxation of an initial distribution
p(x, 0) to the final, steady-state (equilibrium) distribution peq(x). To this end
the Smoluchowski equation is solved for the particular potential energy surface.
There exist several methods to solve SEs. They include finite-difference schemes
in space (x) and time (t) [1], finite-differences in x with time propagation based
on the formal solution of the time-dependent part [2,3], basis set expansions [4],
and path integral methods [4]. Although the first two methods are conceptually
simple and appealing, their applicability to problems with realistic potential en-
ergy curves is limited. With increasing number of intermediate states described
by the potential V (x) the distance between two points Δx must decrease and
the number of grid points required increases. With increasing number of grid
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points the computational effort significantly increases due to storage require-
ments and execution time. Other methods including approximations based on
analytical mean first passage are restricted to one-dimensional (1D) systems and
generalizations to multidimensional dynamics are difficult and in fact seem not
to have been successful so far.

Based on a recently developed hierarchical approach (HDA) to solve the SE in
one and two spatial dimensions we discuss a procedure to increase the efficiency
of the algorithm. The main concern is to limit the number of eigenvalues that
have to be calculated for an underlying free energy surface and the conditions
that allow such an approximation.

In the first section we present an efficient and numerically robust algorithm to
follow diffusive processes on rough potential energy surfaces. Because of the hier-
archical structure of the method, HDA can be extended to multidimensional prob-
lems. In the second section we consider a more efficient way to solve the SE by cal-
culating only a small number of eigenvalues instead of the entire spectrum. This
modification considerably speeds up calculations while retaining accuracy. In the
last sectionwe apply themethod to investigatemigration of carbonmonoxide (CO)
between different internal binding sites in native myoglobin and the L29F mutant
along a well-defined reaction coordinate. From the behavior of p(x, t) the rebinding
time for CO diffusing between metastable states is calculated and compared with
experiment.

2 Hierarchical Discrete Approximation Method

Brownian motion or diffusion of the system in a potential V (x) is described by
the Smoluchowski equation,

∂p(x, t)
∂t

=
∂

∂x
D(x)e−βV (x) ∂

∂x

[
eβV (x)p(x, t)

]
(1)

Here, D(x) is a space-dependent diffusion constant, β = 1/kT is the Boltz-
mann factor and p(x, t) is the space and time-dependent probability distribution.
Equation (1) can be recast as a Master equation [2]

∂p(xn, t)
∂t

= l(n|n + 1)p(xn+1, t) + l(n|n − 1)p(xn−1, t) (2)

− (l(n + 1|n) + l(n − 1|n))p(xn, t)

Here l(n|n ± 1) are the rates to move to the left and to the right from the
starting point xn.

The time evolution of p(x, t) in the equation (1) can be followed numerically
whereby the space coordinate is discretized such that the continuous variable x
takes discrete values xn, n = 1, . . . , N+1. The solution to (1) may be obtained by
solving equations (2). In discrete approximation method (DA) the rate coefficient
l(m|n) for making a transition xn → xm is given by

l(m|n) =
D(n) + D(m)

2d2
exp(−β(V (m) − V (n))

2
), (3)

with d = xn+1 − xn (see Ref. [2]).
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For rough potentials V (x) the number of grid points n required to resolve
the roughness increases rapidly. This leads to a large rate matrix that has to be
diagonalized. In the present work we explore the possibility to solve the SE on a
hierarchy of grids by defining a coarse grid (N) and a subgrid (M) by dividing
each interval (xn, xn+1) into j = 1, . . . , M + 1 points (see Fig.1).

x2 3 x xnxx1 n 1+

M+11 m

xN+1

HDA
(n+1/n)l

Fig. 1. Discretization of the grid [1..N + 1]. Each interval [n..n + 1] is subdivided into

[1..M + 1] points for which a local rate constant is calculated using DA.

The mean passage time τ(n + 1|n) from xn to xn+1 is given by [5]

τ(n + 1|n) =
∫ ∞

0

M∑
j=1

p(xj , t)dt =
∫ ∞

0

(1 − p(xM+1, t))dt. (4)

and we calculate the corresponding rate coefficients as lHDA(n + 1|n) = 1/τ(n +
1|n). For finding pM (x, t) (pM (x, t) is the vector of probabilities in points
x1, . . . , xM+1 on each subinterval) we use the DA method and calculate the
rate coefficients for making transitions in inner points by formula (3). Finally,
the solution of equation (2) can be determined from

pM (x, t) = U exp(λt)U−1pM (x, 0) (5)

The elements of the matrix U and the vector λ are the eigenvectors and
eigenvalues of the rate matrix, respectively. The boundary conditions on each
subinterval (see Fig. 1) are

l(1|0) = l(0|1) = 0, l(M + 2|M + 1) = l(M + 1|M + 2) = 0,

l(M |M + 1) = 0

and the initial condition for the probability distribution is a δ-function at the first
point of each subinterval. Taking pM (x, 0) = {δjp1}, the probability p(xM+1, t)
at grid point xM+1 (required for τ(n + 1|n)) is

p(xM+1, t) =
∑

k

UM+1,k exp(λkt)U−1
k,1 ,
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where UM+1,k and U−1
k,1 are the (M + 1, k)-th and (k, 1)-th elements of the

matrices U and U−1, respectively. Substituting this expression into equation
(4) the integral can be evaluated analytically to yield

τ(n + 1|n) =
∑

k

UM+1,k
1
λk

U−1
k,1

The coefficients lHDA(n|n + 1) are determined from the condition of detailed
balance

lHDA(n|n + 1) =
lHDA(n + 1|n)pe(n)

pe(n + 1)
(6)

where pe(x) is the Boltzmann equilibrium probability distribution for the po-
tential V (x). It should be noted that this definition of lHDA(n|n + 1) is not
necessary but it increases the numerical stability of the procedure. The coeffi-
cients lHDA(n|n + 1) can also be calculated from the mean first passage time
without imposing detailed balance.

3 Solving SE Using Only Smallest by Module Eigenvalues
of Rate Matrix

For the following we consider a master equation in matrix form

∂p(t)
∂t

= Lp(t), (7)

where L is the rate matrix. For finding the probabilities by formula (5) one has
to calculate all eigenvalues λi, the corresponding eigenvectors ui (matrix U) of
the matrix L and its inverse U−1. The computational effort for calculating the
inverse U−1 and the eigenvalues of L is proportional to N3. The size of L depends
on the discrete spatial grid. With increasing number of grid points the compu-
tational effort significantly increases also due to storage requirements. The HDA
method allows to use fewer grid points compared to other DA methods[6] but
even with HDA for multidimensional problems the size of L grows exponentially.
For example, a two-dimensional (2D) coarse 100 × 100 grid leads to a matrix L
with dimensions 10000 × 10000. It is possible to drastically reduce computing
times by addressing the above-mentioned points in the following way.

First, for symmetrical matrices the equality U−1 = UT is valid. The matrix
L is not symmetrical but can be symmetrized. Replacing the elements p(xi, t)
by p(xi, t)/

√
pe(i) in equation (7) gives a new rate matrix Ls with the following

symmetrized elements:

ls(i, j) = l(i, j)
√

pe(j)/pe(i),

where l(i, j) are the coefficients of the matrix L, pe(i) is the equilibrium proba-
bility in point xi. The equality ls(i, j) = ls(j, i) is satisfied using detailed balance
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(6) for the coefficients l(i, j). The matrices L and Ls have the same eigenval-
ues and the eigenvectors ui of L can be expressed by the eigenvectors uis of Ls

through
ui = uis

√
pe(i).

Second, we consider strategies to more efficiently solving the SE by calculat-
ing just a small number of eigenvalues instead of diagonalizing the entire rate
matrix. In diffusion problems all eigenvalues obey λi ≤ 0 where λ = 0 corre-
sponds to the equilibrium probability distribution. If the product ‖λit‖ is large
enough then exp(λit) → 0 in formula (5) and in the long time limit only the
smallest by module eigenvalues contribute to the solution. If the spectrum of
eigenvalues λi separates into small and large eigenvalues by module (see exam-
ple) it is sufficient to consider only the smallest by module eigenvalues and their
corresponding eigenvectors to find the solution of the SE at large times. For
such a case only the 10 to 15 smallest by module eigenvalues of a sparse, real,
symmetric matrix are sought [7], and thus iterative methods can be used (for
example ARPACK)[8]). The rate matrix L is 3-diagonal for a 1D problems and
5-diagonal for 2D problems. To reduce memory requirements the sparse matri-
ces can be stored such that instead of N × N elements only about 5 × N or
7 × N elements have to be kept for 1D or 2D problems, respectively [8]. In the
following this strategy is applied to a problem relevant in biophysical chemistry:
the rebinding time scales of CO in native and mutant myoglobin.

4 Application to Rebinding Time Scales in Myoglobin

We apply our method to calculate the rebinding time for CO diffusing from the
internal cavity (Xe4 pocket) to the primary binding site. The systems contained
a total of 2532 heme protein atoms (native Mb) and 2533 heme protein atoms
(L29F), respectively, the CO ligand and 181 water molecules. The ligand motion
and the associated free energy barriers can be described along suitably chosen
(progression) coordinates. For these systems free energy profiles (see Fig. 2) were
calculated using molecular dynamics (MD) simulations and umbrella sampling
along the reaction coordinate, which is the distance between iron (Fe) and carbon
(C) atoms.[9] The FEPs were calculated along escape paths from 1ns molecular
dynamics simulations previously calculated. In particular, the electrostatic inter-
action between the CO and the environment is accurately described by using the
recently developed fluctuating point charge model for CO.[10] This is important
because CO only interacts via non-bonded (electrostatic and van der Waals)
interactions with the surrounding. Since the total charge of CO is zero and its
dipole moment is small and changes sign around the equilibrium structure, the
contribution of the quadrupole moment to the total interaction is essential. The
combination of umbrella sampling and stochastic simulations provides new and
fundamental insight into the ligand rebinding Mb·CO → MbCO for native and
mutant myoglobin. Direct simulations for converged barrier crossing statistics is
computationally demanding since the time scales involved in the rebinding pro-
cess are long and sufficient sampling by standard MD simulations can be difficult.
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Solving SE on a constructed FE profiles allows not only to calculate rebinding
times but also investigate the dynamics of CO migration and its population in
different pockets for the early stages following photodissociation of the ligand
from the heme. The binding site (B) (see Fig.2) is of major importance since
after photodissociation it is rapidly populated. From there, the ligand can either
rebind directly (A) or it follows a largely unknown path within the protein to
diffuse towards the solvent from where it rebinds at much longer time scales. One
possible, secondary binding site in the neighborhood of site B is the Xe4 pocket.

We solved the SE equation using the free energy profiles (V (x) in eq. (1)) with
an initial distribution of CO in the Xe4 pocket with T = 300 K and a constant
diffusion coefficient D = 2.2 Å 2/ps. D was calculated in the distal pocket from
mean square displacements at T = 300 K. Corresponding to the notation of the
HDA method the grid was discretized by N + 1 = 205 and M + 1 = 6 points.
The discretization on the coarse and fine grid are 0.05 and 0.01, respectively.
The inset in Fig.2 shows that the FEPs are quite rough. For example, to fully
explore the fine structure of the potential by the DA method, 1021 grid points
are required that corresponds to the step discretization 0.01.

In Table 1 the ten smallest by module eigenvalues of the rate matrix LHDA

for native MbCO are given.
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Table 1. Smallest by module eigenvalues of the rate matrix for native MbCO

i 196 197 198 199 200 201 202 203 204 205

λi -74.07 -63.41 -49.18 -42.13 -31.55 -24.94 -22.87 -0.014 -0.000044 0

The three smallest by module eigenvalues differ from the remaining eigenval-
ues by at least 3 orders of magnitude. At time t = 1 ps the value exp(λ202t) ≈
1.16 · 10−10 and after 1 ps only λ203, λ204 and λ205 contribute to the solution.
Typical rebinding time scales are known to be of the order of 100 ns for na-
tive Mb. Thus, the calculation of p(x, t) for t > 10 ps starting from p(x0, t0)
and using the three smallest by module eigenvalues is sufficient. The probability
distributions calculated with the entire spectrum of λi and with 3 eigenvalues
are the same at t ≥ 1 ps. As an example, Figure 3 shows p(x, t) calculated at
t = 100 ps where the solid line and line with circles represent the distributions
obtained with the entire spectrum of λi and with only λ203, λ204, λ205, respec-
tively. The probability distributions are virtually indistinguishable but the effort
to calculate them differs considerably. It can also be seen that p(x, t) is sensitive
to the roughness of the free energy profile. Finally, even after 100 ps some of
the population has migrated to the bound state (A, see Fig. 2) although it will
take about 100 times longer for the entire distribution to fully equilibrate (see
below). The docking site (B) is only transiently populated.

The change in p(x, t) within the first picosecond is negligible compared to
the overall process which takes about 105 ps. Calculating the probability distri-
butions by formula (5) one can find the rebinding time τ from τ =

∫∞
t=1 dtΣ(t)

where Σ(t) =
∫

p(x, t)dx. This yields τ =38.3 ns for native MbCO and 119.5 ps
for the L29F mutant. Because of the much smaller barriers on the FEP, for the
L29F mutant the 5 smallest by module eigenvalues are separated from the rest
of the eigenvalue spectrum and only these were retained in the calculations.

Experimentally, the rebinding dynamics of CO after photodissociation has
been studied extensively for native MbCO and for various mutants under dif-
ferent conditions[11,12,13,14] by following the number of ligand molecules N(t)
that have not rebound at time t after photodissociation. Experimental inves-
tigations of the A ← B rebinding in native MbCO have provided Arrhenius
constants and an effective rebinding barrier height.[11] Using these values, one
finds a room temperature rebinding time of ≈ 100 ns, also consistent with ns
time resolved spectroscopy[12]. The calculated value τ =38.3 ns is in qualita-
tive agreement with experiment. However, as shown previously, the asymptotic
difference between the bound and the unbound free energy curves is a single,
physically motivated parameter that allows to achieve full agreement between ex-
periment and theory.[9] This energy difference is known to be around 5 kcal/mol,
but no precise values are available. Since in the present work we primarily focus
on efficiency considerations in solving SE, further investigations of this aspect
have been omitted. For the L29F mutant the rebinding time is not experimen-
tally determined. From time-resolved X-ray experiments[15] it is known that
ligand migration between B and Xe4 is considerably more rapid than in native
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presents the distribution calculated using 205 eigenvalues, line with circles – using 3

smallest by module eigenvalues. The magnifications show the transient population in

the docking site (B) and the rough profile of the free energy surface around the Xe4

pocket (p(x, t) rescaled for better visibility).

Mb. In the L29F mutant the CO escapes on a ns time scale from B to the Xe4
pocket after dissociation. This is in good agreement with the constructed free
energy profile where free energy barriers are much smaller than for native Mb
(see Fig. 2) and CO rebinding occurs on a ns time scale. Thus, the flat FEP
for CO migration for the L29F mutant reflects the faster dynamics. Again, the
precise rebinding time will depend upon the asymptotic separation between the
two free energy profiles.

Summary. The HDA method for solving SEs on rough potentials was discussed
and analyzed. The method presented here is particularly useful for processes
taking place on long-time scales. In such processes it may be possible that the
eigenvalues separate into two groups of different magnitude and only the small-
est by module eigenvalues and their eigenvectors are required for accurate time
propagation of p(x, t). Here, for the first time, HDA is applied for a realistic
free energy profile to calculate rebinding time for CO diffusing in Mb and L29F
mutant. Comparisons of HDA with alternative methods on model potentials can
be found in[6]. The results were obtained using only 3 and 5 eigenvalues (for
native MbCO and its mutant, respectively) which considerably speeds up the
calculations but without affecting the accuracy of the propagation. In summary,
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the described technique provides an attractive alternative for approximate so-
lutions of Smoluchowski equation for multidimensional systems involving rough
interaction potentials.
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Abstract. During the last few years new functionalities of RNA have
been discovered, renewing the need for computational tools for their anal-
ysis. To this respect, multiple sequence alignment is an essential step in
finding structurally conserved regions in related RNA sequences. In con-
trast to proteins, many classes of functionally related RNA molecules
show a rather weak sequence conservation but instead a fairly well con-
served secondary structure. Hence, any method that relates RNA se-
quences in form of multiple alignments should take structural features
into account, which has been verified in recent studies.

Progress has been made in developing new structural alignment algo-
rithms, however, current methods are computationally costly or do not
have the desired accuracy to make them an everyday tool. In this paper
we present a fast, practical, and accurate method for computing multi-
ple, structural RNA alignments. The method is based on combining a
new pairwise structural alignment method with the popular program T-
Coffee. Our pairwise method is based on an integer linear programming
(ILP) formulation resulting from a graph-theoretic reformulation of the
structural alignment problem. We find provably optimal or near-optimal
solutions of the ILP with a Lagrangian approach. Tests on a recently
published benchmark set show that our Lagrangian approach outper-
forms current programs in quality and in the length of the sequences it
can align.

1 Introduction

Recently, it has become clear that RNA molecules perform additional functions
that were previously thought of being carried out by proteins. Many more of
these functional RNAs have yet to be discovered. Computing multiple align-
ments to detect structural features is usually the first step in analyzing sequences
� Supported by the DFG Research Center Matheon “Mathematics for key technolo-

gies” in Berlin, the German Federal Ministry of Education and Research, (grant no.
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of biomolecules. Unfortunately, and unlike proteins, many functional classes of
RNA show little sequence conservation, but rather a conserved secondary struc-
ture which is formed by folding in space and forming hydrogen bonds between
its bases. Among such RNAs are tRNA, rRNA, snoRNAs, and SRP RNA [1].

Hence, algorithms to compute multiple alignments ought to take not only the
sequence, but also the secondary structure into account. Washietl and Hofacker
[2] support this consideration by showing that sequence based alignments are
significantly worse than sequence-structure based alignments if their pairwise
sequence identity sinks below ≈ 60%. This observation is confirmed by Gardner
and coworkers [3] in a paper that also benchmarks numerous multiple alignment
programs.

Thus, the problem of producing RNA alignments that find a common struc-
ture has become the bottleneck in the computational study of functional RNAs.
To date, the available tools for computing structural alignments are often inca-
pable of handling reasonable input sizes or produce alignments of low quality.
With this work we present a multiple RNA sequence-structure alignment tool
that computes fast and accurate alignments. Our method uses a new pairwise
structural alignment algorithm based on Lagrangian relaxation in combination
with the progressive alignment tool T-Coffee.

Previous Work. The computational problem of considering sequence and struc-
ture of an RNA molecule simultaneously was first addressed by Sankoff [4] who
proposed a dynamic programming algorithm that aligns a set of RNA sequences
while at the same time predicting their common fold. The running time of this
algorithm is O(n3m) where m is the number of sequences and n their length. Al-
gorithms similar in spirit were proposed later for the problem of comparing one
RNA sequence to one or more of known structure. Corpet and Michot [5] align
simultaneously a sequence with a number of other, already aligned, sequences
using both primary and secondary structure. Their dynamic programming algo-
rithm requires O(n5) running time and O(n4) space and thus can handle only
short sequences. Current implementations modify Sankoff’s algorithm by impos-
ing limits on the size or shape of substructures, e.g., Dynalign [6,7], Foldalign
[8,9], pmcomp [1], and Stemloc [10,11].

Bafna et al. [12] gave an algorithm that simultaneously aligns the primary
and secondary structure of two sequences that runs in time O(n4) which still
does not make it applicable to instances of realistic size. Common motifs among
several sequences are searched by Waterman [13]. Eddy and Durbin [14] describe
probabilistic models for measuring the secondary structure and primary sequence
consensus of RNA sequence families. They present algorithms for analyzing and
comparing RNA sequences as well as database search techniques. Since the ba-
sic operation in their approach is an expensive dynamic programming algorithm,
their algorithms cannot analyze sequences longer than 150-200 nucleotides. In-
stead of folding and aligning sequences simultaneously, Hofacker et al. [1] present
a dynamic programming approach to align the corresponding base pair probabil-
ity matrices, computed by McCaskill’s partition function algorithm [15]. Their
approach PMcomp—also a variant of Sankoff’s algorithm—takes time O(n6) and
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space O(n4), but can be reduced by solving a banded version of the problem to
O(n4) time and O(n3) space complexity. Their tool, pmmulti, which we also use
to compare our new approach with, obtains multiple structural alignments by
aligning consensus base pair probability matrices in a progressive fashion.

The base pair probabilities can be directly used to weight edges in the struc-
tural alignment graph introduced in Lenhof et al. [16] where the authors pre-
sented a branch-and-cut algorithm for structurally aligning two RNA sequences.
The underlying graph-theoretical formulation is flexible and allows for pseu-
doknots. Previous work on contact map overlap in the area of proteomics by
Caprara and Lancia [17] and for the two-sequence case of the structural align-
ment problem by Bauer and Klau [18] indicates, however, that Lagrangian re-
laxation is better suited to obtain provably optimal or near-optimal solutions to
the corresponding integer linear programming (ILP) formulation than a direct
branch-and-cut approach in terms of running time. Bauer, Klau, and Reinert
extend these ideas to multiple sequences [19]. Currently, however, the approach
is applicable only to few sequences and small instance sizes.

Contribution. Our goal is to devise a fast method to compute high-quality, mul-
tiple structural alignments for a large number of possibly long RNA sequences.

Our key idea is to use the program T-Coffee [20], a successful multiple
sequence alignment program that conducts a progressive alignment similar to
ClustalW [21] but additionally incorporates local alignment information in form
of so called libraries. This idea is not new by itself. Siebert and Backofen [22]
already employ it in their program MARNA, which we also use in our experimental
comparisons. The difference lies in the way the pairwise alignments are com-
puted: MARNA takes fixed RNA structures as input and minimizes their pairwise
edit distances as proposed by Jiang et al. [23]. In the general case of unknown
structures, MARNA uses a whole ensemble of suboptimal structures in order not
to overlook structurally conserved motifs.

We use the implementation of Bauer and Klau [18] (Lara) and improve it
in several ways, such that the obtained pairwise, structural alignments are very
accurate. das hier weggenommen und oben ein wenig ausfuerhlicher beschrieben
while Siebert and We will show that T-Lara is better than or competitive to
other, more costly, structural alignment programs and can handle much longer
sequences while maintaining a running time of only a couple of minutes. Fur-
thermore, T-Lara yields better results than MARNA in terms of structural conser-
vation, in particular for test instances that are longer than ≈ 300 bases.

2 Lagrangian Structural Alignment of Two Sequences

We have described the theoretical framework of the Lagrangian approach to
structural sequence alignment elsewhere (see [18,19]). We therefore provide only
a short summary of the basic approach and focus on recent practical improve-
ments such as the incorporation of affine gap costs and a more sophisticated
selection of candidate edges.
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2.1 Terminology and Basic Approach

Let S be a sequence s1, . . . , sn of length n over the alphabet Σ = {A, C, G, U}.
A paired base (i, j) is called an interaction if (i, j) forms a Watson-Crick-pair.
The set P of interactions is called the annotation of sequence S. Two interactions
are said to be in conflict, if they share one base; they form a pseudoknot if they
cross each other. A pair (S, P ) is called an annotated sequence. Note that a
structure where no pair of interactions is in conflict with each other forms a
valid secondary structure of an RNA sequence, possibly with pseudoknots.

We are given two annotated sequences (S1, P1) and (S2, P2) and model the
input as a graph G = (V, L ∪ I). The set V denotes the vertices of the graph,
in this case the bases of the sequences. The set L contains alignment edges
between vertices of the two input sequences (for sake of better distinction called
lines) whereas the set I codes the two annotations by means of interaction
edges between vertices of the same sequence. A subset L ⊂ L corresponds to an
alignment of the two sequences if L does not contain crossing lines, since those
correspond to ordering conflicts of the letters in the sequences. Two interaction
edges (i1, i2) ∈ Pi and (j1, j2) ∈ Pj are said to be realized by an alignment
L if and only if L contains the alignment edges l = (i1, j1) and m = (i2, j2).
The pair (l, m) is called an interaction match. Note that we define (l, m) as an
ordered tuple, that is, (l, m) is distinct from (m, l). Figure 1 illustrates the above
definitions by means of an example.

Note that the graph-theoretical model gives absolutely no restriction on the
annotation of the sequences, i.e., one can align two known structures, infer a
known structure to an unknown or compare two unknown structures.

We assign positive weights wl and wij to each line l and each interaction
match (i, j), respectively, that represent the benefit of realizing the line or the
match. The weights are given, for example, by mutation score matrices or—in
the case of interaction matches—by the base pair probabilities as computed by
McCaskill’s algorithm [15].

The structural alignment problem now corresponds to finding a maximally
weighted subset of lines and interaction edges in the input graph such that

U

G A U C - C

G- U U G CA

C
G G A U C C

G A U G C

e1

e2

Fig. 1. Graph-theoretic concept of alignment. The right side shows a structural align-

ment of two annotated sequences, the left side the corresponding graph G. Solid lines

represent alignment edges in L, dotted lines represent additional candidate edges from

L (only a subset shown). Replacing, e.g., e1 ∈ L, by e2 creates a crossing. Lines L realize

two interaction matches (remember that interaction matches are ordered tuples).
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no lines cross each other, each interaction match is realized, and no vertex is
incident to more than one interaction edge. We define binary variables xl for
each alignment edge l and ylm for each interaction match (l, m) and rewrite the
problem as the following integer linear program:

max
∑
l∈L

wlxl +
∑
l∈L

∑
m∈L

wlmylm (1)

s. t.
∑
l∈I

xl ≤ 1 ∀ sets of crossing lines I (2)

ylm = yml ∀ l, m ∈ L (3)∑
m∈L

ylm ≤ xl ∀ l ∈ L (4)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer (5)

We have shown in [18] that dropping constraints (3) leads to a much easier
problem (the relaxed problem). Figure 2 shows possible solutions for the original
and the relaxed problem. Since each alignment edge l is free to choose its own
best interaction match (l, m) regardless of what interaction match line m chooses
(recall that we dropped the equality constraint ylm = yml), the relaxed problem
can be reduced to a classical primary sequence alignment problem that is in turn
solvable in polynomial time.

We follow the iterative Lagrangian optimization method and move the com-
plicating constraints into the objective function with a penalty term for their
violation. An iteration consists of solving an instance of the relaxed problem and
adapting the penalty terms. As a by-product we obtain a feasible solution in each
iteration by interpreting the solution of the relaxed problem as an input graph
for a maximum weighted matching problem. With an increasing number of iter-

l m

Fig. 2. The left part shows an interaction match that is realized from both sides,

where the constraint ylm = yml ist satisfied. Dropping the equality constraints allows

solutions like the one shown in the right part: These solutions have a higher score, but

do not necessarily yield a valid solution for the original problem.
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ations, these generated solutions become better and better and finally converge
to a provable optimal or near-optimal solution of the above ILP. The advan-
tages of this approach over alternative methods based on dynamic programming
are threefold: First, the Lagrangian method is fast and applicable to sequence
lengths where dynamic programming must fail computationally. Secondly, the
graph-theoretical formulation allows for the formation of pseudoknot structures
that cannot be handled by alternative approaches. Finally, as we show in the
next section, we are able to incorporate an affine gap cost model, which results
in a more realistic gap distribution.

2.2 Practical Improvements

We have implemented two major modifications of the basic approach described
in the preceding section in order to increase its applicability to RNA data from
practical applications.

– The basic approach does not consider gap costs and alignments computed
with an early version of our implementation suffered from this drawback.
We have therefore replaced the recurrence relation in the standard dynamic
programming algorithm for classical primary sequence alignment by a ver-
sion that takes into account affine gap scores (see, e.g., [24]). We have also
modified the backtracking in the dynamic programming matrix in order to
account for a different treatment of gaps occurring at the beginning or the
end of the sequence.

– We achieved a speed-up compared to the basic approach by providing an-
other way we select the candidate edges. Note that only the complete bipar-
tite graph models all possible alignments of two sequences. In practice, this
is computationally too expensive, and we resort to a heuristic selection of
promising candidate edges:
Instead of computing a conventional sequence alignment with affine gap costs
and subsequently inserting all alignment edges realized by any suboptimal
alignment scoring better than a fixed threshold s below the optimal score (as
used in [18]), we provide a sliding window technique—as described in [25]—
that adjusts the suboptimality threshold s according to the local quality of
the alignment. More precisely, for every nucleotide we compute a confidence
value evaluating the quality of the local alignment within a certain window.
In regions of the sequence where the quality of the conventional sequence
alignment appears to be very good, none or only a small number of subop-
timal alignment edges are considered. In alignment regions that show little
sequence conservation, more alignment edges are generated.

3 Extension to Multiple Sequences

We have shown how to extend the formulation (1)-(5) and the Lagrangian relax-
ation technique to the multiple sequence case in [19]. Here, we follow a different
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approach, since the inherent computational complexity of the multiple structural
sequence alignment problem impedes the use of exact methods for instances with
many sequences. We wish to remark that we are following two different lines of
research: on the one hand, we investigate the structure of truly optimal multiple
alignments and aim at solving instances of three or four sequences to provable
optimality. On the other hand, we wish to provide a fast and practical—although
possibly suboptimal—tool based on the good results of the pairwise algorithm.
For this reason, we decided to integrate our pairwise algorithm into a multiple
alignment framework.

3.1 Progressive Alignment with T-Coffee

T-Coffee uses a progressive sequence alignment approach similar to the one of
ClustalW [21]. Progressive methods build multiple alignments from pairwise
alignments. The pairwise distances are usually used to compute a guide tree
which in turn determines the order in which the sequences are aligned to the
evolving multiple alignment.

Progressive approaches often suffer from their sensitivity to the order in which
the sequences are chosen during the alignment process. T-Coffee reduces this ef-
fect by making use of local alignment information from all pairwise sequence
alignments during its progressive alignment phase. This local information, how-
ever, is computed with Lalign [26] and therefore considers only sequence-based
information.

A nice feature about the T-Coffee implementation is that the user can sup-
ply such local alignment information. Therefore, we compute all pairwise struc-
tural alignments using Lara [18], assigning a high score to conserved interaction
matches. The structural information is subsequently passed on to T-Coffee that
computes a multiple alignment, taking into account the additional structural
information.

4 Computational Results

4.1 Materials and Methods

We took a subset of data from the recently published BRaliBase dataset4 [3]
and used two different scores: the sum-of-pairs score SPS and the structure
conservation index SCI.

If reliable reference alignments were available, we compared the computed
alignments to the reference alignments and computed the SPS score: the SPS
score is a value between 0 and 1 indicating the number of sequences correctly
aligned (in case of a SPS score of 1, the two compared alignments are identical).

On the other hand, the SCI value compares the minimum free energies of
the single sequences in an alignment with a “consensus energy” imposed by
the alignment, which is computed by incorporating covariation terms into a
4 Freely available from http://www.binf.ku.dk/users/pgardner/bralibase/
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Table 1. Average SCI scores computed over a test set of 242 instances with different

programs

Program Av. SCI Av. SPS

clustal 0.6076 0.7345
MUSCLE 0.6069 0.7666
T-Coffee 0.5972 0.7543
T-Lara 0.71 0.77

Table 2. Average T-Lara SCI scores for the different groups of test instances

Group (# of instances) Av. SCI Av. SPS

5S rRNA (39) 0.84 0.903
U5 spliceosomal (101) 0.60 0.765
Group II introns (72) 0.73 0.696
tRNA (30) 0.84 0.800

free energy minimization computation. More technically, let Ê be the consensus
energy value of the alignment and let En be the mean of all MFE (minimum
free energy) values of n sequences, respectively. Then the SCI is defined as

SCI =
Ê

En

An SCI close to zero indicates that there is no conserved structure within the
alignment, whereas SCI > 1 exhibits a perfectly conserved structure, additionally
supported by compensatory mutations. Therefore, the SCI assesses in particular
the structural quality of an alignment.

As a first test, we took all instances with low homology (that is with sequence
identity < 55%) of the first dataset that was used by Gardner et al. in [3]: we
computed a structural alignment of all 242 instances, with one instance being a
set of either five Group II introns, 5S rRNA, tRNA, or U5 spliceosomal RNA
sequences. The entire computation took 345.93 minutes on an AMD Opteron
server running at 2Ghz. Table 1 shows the average SCI scores of the three best-
scoring sequence-based programs on the low homology data. It should be noted
that the alignment program (clustalW) computing the best SCI score of the
first dataset reached an average SCI score of only 0.6076. Table 2 gives a more
detailed view of T-Lara’s performance on the different subgroups.

The big gap between T-Lara and the other programs is easily explained by
the fact that due to the extensive computational demands of structure align-
ment programs, Gardner and colleagues only used sequence based approaches
for the first dataset. T-Lara removes In case of sequences with low sequence
identity (say below 50%), structure alignment programs compute significantly
better alignments in terms of conserving structural motifs.

For comparing structure alignment programs, Gardner et al. chose a subset
of tRNA instances consisting of only two tRNA sequences (some programs tested
in their survey are only capable of computing pairwise structural alignments).
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Fig. 3. 2D plots of 97 tRNA instances taken from BRalibase. The x- and y-axis are

labelled with the corresponding SPS and SCI scores.

Since our approach can handle multiple sequences, we augmented this dataset
and calculated all tRNA instances (consisting of five sequences) from the first
dataset and compared them to pmmulti and clustalW. Over a set of 97 instances
of five tRNA sequences (pmmulti failed on one instance) the average SCI score
of clustalW—one of the best sequence-based alignment programs from the first
dataset—is 0.82, whereas pmmulti and T-Lara reach average SCI scores of 1.044
and 1.047 at a running time of 101.91 and 75.16 minutes, respectively. The
average SPS scores of clustalW, pmmulti, and T-Lara are 0.854, 0.926, and
0.954, respectively. Figures 3 and 4 show the SPS and SCI scores for all 97
tRNA instances.

It is interesting to observe that a high SPS score does not necessarily imply
a high SCI score (and vice versa): pmmulti, for instance, computes alignments
that have a high SCI score, whereas on average the SPS is worse compared
to T-Lara. Consequently, considering the SCI score alone is a reasonable first
indication for the structural quality of the alignment: a more thorough analysis,
however, should take the SPS score into account as well if reference alignments
are available.

To illustrate our ability to handle long sequences, we randomly chose 14 in-
stances of three SRP RNA sequences with low sequence identity from BRaliBase
and compared the alignments computed by T-Lara to those of clustalW and
MARNA.

Table 3 shows the computed SCI scores of clustalW, MARNA, and T-Lara,
respectively. We were able to calculate only such a small number of instances,
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Fig. 4. Detailed view on alignment instances with a SPS score of 0.7 or higher

since MARNA can be accessed only by a web interface which makes the evalua-
tion tedious. Since the reference alignment from BRaliBase “(...) were found to
be untrustworthy (...)” (quote from the BRaliBase website), we refrained from
considering the SPS score for the instances. For the instances computed, how-
ever, the table shows that T-Lara clearly outperforms clustalW and MARNA in
terms of conserving structural elements. Furthermore, it takes T-Lara just ≈ 40
minutes in total to compute the alignments of the 14 instances.

5 Discussion

In this paper we presented the new multiple structural alignment program
T-Lara. Our experiments show that T-Lara computes structural alignments
comparable or better than those computed by variants of Sankoff’s algorithm.
Yet, our approach can also be applied to longer sequences (e.g., 16S rRNA se-
quences of length ≈ 1600 nucleotides) since we do not suffer from the restrictive
demands in terms of CPU time and memory imposed by Sankoff’s dynamic pro-
gramming algorithm. Additionally, our algorithm does not restrict the secondary
structure of a given sequence in any way (i.e., the approach allows arbitrary pseu-
doknots). Therefore, we plan to integrate more accurate base pair probabilities
based on pseudoknot energy parameters (like, for example, [27]).

In the future we will extend our Lagrangian approach with our own progres-
sive code (similar in spirit to pmmulti), and incorporate better scoring matrices
(e.g., RIBOSUM matrices) should additionally enhance the quality of the align-
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Table 3. SCI scores of clustalW, MARNA, and T-Lara on SRP sequences

SeqID Instance clustalW MARNA T-Lara

0.49 aln38 0.55 0.57 0.66
0.50 aln58 0.86 0.68 1.00
0.50 aln27 0.54 0.40 0.58
0.51 aln16 0.54 0.29 0.62
0.51 aln34 0.84 0.62 0.93
0.52 aln11 0.48 0.13 0.54
0.53 aln6 0.62 0.36 0.66
0.53 aln7 0.63 0.55 0.70
0.54 aln20 0.66 0.71 0.78
0.54 aln28 0.62 0.41 0.69
0.54 aln5 0.63 0.56 0.73
0.58 aln43 0.66 0.42 0.79
0.59 aln48 0.78 0.33 0.76
0.60 aln21 0.49 0.36 0.54

ments. Furthermore, a web service providing access to our algorithm is currently
developed. A public-domain version of the program will follow in the next weeks.

Acknowledgments. The authors thank Veronika Gamper for implementing T-La-
ra’s T-Coffee library support and the gap score modifications, and Rolf Backofen
for pointing us to the possible discrepancies between SPS and SCI scores.
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Abstract. We propose an approach for transforming the sampling of a
molecular conformation distribution into an analytical model based on
Hidden Markov Models. The model describes the sampled shape den-
sity as a mixture of multivariate unimodal densities. Thus, it delivers
an interpretation of the sampled density as a set of typical shapes that
appear with different probabilities and are characterized by their geom-
etry, their variability and transition probabilities between the shapes.
The gained model is used to identify atom groups of constant shape that
are connected by metastable torsion angles. Based on this description an
alignment for the original sampling is computed. As it takes into account
the different shapes contained in the sampled set, this alignment allows to
compute reasonable average shapes and meaningful shape density plots.
Furthermore, it enables us to visualize typical conformations.

1 Introduction

Molecules are flexible structures. They move, vibrate, and interact with other
molecules and their environment. Understanding these movements and interac-
tions is essential for the complete comprehension of structure-function relation-
ships, including many aspects of drug design and intermolecular interactions.
Information about possible shapes of a molecule is carried by a density in the
molecule’s state space. Given some reasonably sized molecule, Hybrid Monte
Carlo (HMC) simulation techniques allow to compute a set of molecular con-
figurations that approximates this probability density of molecular shapes in
thermodynamic equilibrium (see, e.g., [1]). Thanks to the molecular dynamics
step in the HMC algorithm, the resulting sequence of states (trajectory) also
contains dynamic information. Thus, the molecule’s space of shapes can be an-
alyzed [2] for metastable subsets, i.e. for regions in shape space that will be left
by the molecule with very low probability.

These metastable subsets of shape space can be understood as the different
rough shapes the molecule typically can take. However, the subsets can still
contain more than one mode of the shape density. These modes can again be
understood as typical shapes between which the molecule can change easier than
between metastable sets. Overall, this constitutes a hierarchy of metastable sets.

For the visualization of metastable conformations, a partitioning of the shape
space is of interest that also separates the modes inside a metastable subset. A
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further challenge is to find a suitable alignment of the single configurations to
each other. In particular, this is important for reasonable averaging and visual-
ization of shapes.

In this paper we will present a method for analyzing molecular dynamics
trajectories with respect to typical molecular shapes. After shortly surveying
related work (Sect. 2), we will give some background on the treatment of circular
coordinates (Sect. 3), in particular dihedral angles, on Hidden Markov Models
(Sect. 4), and on the concept of Perron cluster cluster analysis (Sect. 5). Based
on this we present

– a technique for partitioning the shape variations of a molecular dynamics
trajectory into long-time changes and thermal fluctuations using Hidden
Markov Models (Sect. 6)

– a method to determine a hierarchical decomposition of the molecule into
rigid sets of interconnected atoms that are connected by metastable degrees
of freedom (Sect. 7)

– a new alignment strategy that clearly separates the long-time shapes in carte-
sian coordinates while minimizing the variance induced by thermal fluctua-
tions (Sect. 8).

Application of the approach is demonstated in Sect. 9. Conclusions and future
work are presented in Sect. 10.

2 Related Work

Visual molecular analysis is well established and widely used in research and in-
dustry. The multifarious demands in chemical, biochemical and pharmaceutical
applications have been addressed by commercial and academic software pack-
ages, offering a variety of visual representations of molecules as well as editing
functions. However, specific tools for visual shape analysis based on molecular
trajectories seem not to exist.

Identification of molecular conformations is a current research topic, see e.g.
[3,4,5]. Recently, in [6] a method has been proposed - similar to our analysis
step - for identification of the most important conformations of a biomolecular
system from Metropolis Monte Carlo time series. The authors, however, do not
aim at alignment and visualization of long-time shapes.

Alignment is a classical task in molecular science. When two molecules are
to be compared in 3D space, alignment is necessary in order to eliminate differ-
ences caused by global rigid transformations. Kabsch [7,8] gives a straightforward
method for computing an alignment between two point sets. Pennec [9] develops
an approach to align multiple point sets iteratively. Both methods are character-
ized in more detail in Sect. 8. Huitema and van Liere [10] describe techniques for
interactive visualization of protein dynamics, utilizing the concept of essential
dynamics [11]. They interpret the dynamics of a protein as a trajectory in a high
dimensional space and employ covariance analysis to filter out large concerted
motions. Results on visual analysis of metastable molecular conformations on
base of time series have been presented in [12].
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3 Statistics of Molecular Shapes

For the analysis of molecular shapes some coordinate system is needed that rep-
resents the essential aspects of a molecular shape. Since we are not interested in
a molecule’s absolute position or orientation in 3D space, Cartesian coordinates
of the atom positions are not appropriate. Neglecting the need to distinguish
between mirror symmetric molecular shapes, it would be sufficient to consider
intra-molecular distances between atoms. However, it turns out that the triple
of bond lengths, bond angles and dihedral angles is more suitable. Bond lengths
and angles can be regarded as nearly constant with respect to the shape varia-
tions of interest here. The interesting changes thus can be expressed via dihedral
angles, which are defined by a sequence of four atoms where the respective angle
is the angle between the two planes spanned by the first three and the last three
atoms. Regarding the three bonds that sequentially connect the four atoms, the
dihedral describes the rotation of the third bond relative to the first around the
axis defined by the middle bond.

As bond lengths and angles are not of interest, we can describe molecular
shapes in a coordinate space build by dihedral angles, which have a bounded
and periodic value range [0, 2π). For statistical analyses this periodicity has
to be taken into account. To get statistical informations about our data we
cannot apply standard techniques. Naive averaging of angular values may lead
to invalid results, because periodicity is ignored. To overcome this problem, we
can interpret every angular value α as a point z(α) = eiα on the unit circle
in the complex plane. This representation intrinsically reflects the periodicity
of angular values and is independent of the choice of an interval of periodicity.
Averaging this set of points in the complex plane, we can define a reasonable
mean angle ᾱ by

R̄ eiᾱ =
1
N

N∑
j=1

eiαj . (1)

As we want to set up a Hidden Markov Model in the space of dihedral angles,
we need a probability density function for circular variables. The circular analo-
gon to the normal distribution is the von-Mises- or circular normal distribution:

f1D(α; φ, κ) =
1

2πI0(κ)
exp {κ cos(α − φ)} with φ ∈ [0, 2π) and κ ≥ 0 (2)

where In is the modified Bessel function of order n. f1D is a unimodal distribution
with maximum at α = φ and is symmetric on the interval [φ − π, φ + π]. The
mean angle ᾱ from (1) turns out to be a maximum likelihood estimator for
the mean direction φ. The respective maximum likelihood estimator for the
concentration parameter κ is based on the amplitude R̄ of the complex mean in
Eq. (1): I1(κ)/I0(κ) = R̄. High values of κ correspond to narrow distributions,
while the minimal value (κ = 0) makes the von-Mises distribution uniform. For
description of multidimensional distributions of angles we use a tensor product
of von Mises distributions.
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4 Hidden Markov Models

A Markov chain is a sequence of random variables S1, S2, S3, . . . with state
space I that fulfills the so called Markov property:

P (Sn+1 = in+1|S1 = i1, . . . , Sn = in) = P (Sn+1 = in+1|Sn = in) (3)

with i1, . . . , in+1 ∈ I. If this conditional probability is independent of n, it can
be described by a stochastic matrix T = {tij} with tij := P (Sn+1 = j|Sn = i)
where i, j ∈ I and

∑
j∈I tij = 1. Such a Markov chain is called homogeneous.

Hidden Markov Models (HMM), see e.g. [13], are a two-stage probabilistic
concept for explaining the course of a time series. The primary assumption of a
HMM is that a given time series is based on the realization of a homogeneous
Markov Chain with finite state space I. This realization is not directly observ-
able, but only by its influence on the second stage of the model. The HMM
associates every state of its Markov chain with a probability density function
defined on the value space of the time series to be explained. Depending on the
state of the Markov chain realization at a given instant in time, a sample of the
respective probability density is drawn as the observable value of the time series.
A HMM is completely specified by the following parameters:

1. Markov chain start distribution πi = P (S1 = i), (i ∈ I),
2. Markov chain transition matrix T = {tij}, (i, j ∈ I), and
3. probability density functions associated to the states of the Markov chain.

Dealing with HMMs two questions are typically of interest: First, given a se-
quence of observations, what are the optimal parameters of the HMM to explain
this sequence? And second, given a sequence of observations and the parameters
of the HMM, what is the underlying sequence of Markov states? Both question
are answered by maximum likelihood estimation, i.e. by choosing the unknown
parameters such that the likelihood of the observation sequence gets maximal.

For the first question this leads to the Baum-Welch-algorithm, which is a
special case of the iterative Expectation-Maximization algorithm [14]. The it-
eration assumes a given set of model parameters. In a first step probabilities
for the hidden parts of the model, in our case the states of the Markov chain
realization, are computed. In a second step new model parameters are computed
based on these probabilities. In every iteration cycle the likelihood of the obser-
vation given the model parameters increases. The iteration is terminated when
the amount of increase drops under a threshold.

Maximum likelihood estimation for the second question is done via the direct
Viterbi algorithm. The estimated sequence of states is called Viterbi path.

The construction of a HMM for a given series of observations requires the
choice of the form of the probability density functions. We use tensor products
of von Mises distributions, Eq. (2).

Further, the number of states of the hidden Markov chain has to be deter-
mined. In general, there is no way to measure whether a used number of states
is appropriate. The achievable likelihood, which is the optimization criterion of
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the Baum-Welch-algorithm, monotonously increases with the number of states.
Thus, it does not have a local maximum that would define an optimal number.
In Sect. 6 we will use the concept of metastability to find a suitable number of
states.

5 Perron Cluster Analysis

The phrase metastable conformation indicates a dynamic aspect of molecular
behavior: it denotes approximate molecular geometries that survive the fast os-
cillations of molecular dynamics. In mathematical terms a metastable confor-
mation is an almost invariant set of the ensemble, i.e. a subset of the molecular
state space, that a molecular trajectory will only leave after a long time.

To find these metastable subsets of the state space, molecular dynamics is
described using a transfer operator approach [15]. The state space is decomposed
into subsets and a transfer operator is constructed, that specifies transition prob-
abilities between these sets. Due to the reversibility of the dynamics, spectral
analysis of the transfer operator leads to a real valued spectrum with maximal
eigenvalue λmax = 1, while the corresponding eigenvector is constant. If the
state space contains l metastable subsets, the l − 1 next largest eigenvalues are
very close to 1. This so called Perron Cluster of eigenvalues can be identified by
a spectral gap that separates it from the remaining smaller eigenvalues.

If l has been determined, the metastable subsets can be constructed using
the l corresponding eigenvectors, which define a mapping of the states to an
approximate simplex in l-dimensional Euclidean space (cf. [5] for details). We
can associate the l simplex vertices with the l metastable subsets we are looking
for. Applying a linear transformation in the l-dimensional space mapping the
simplex vertices onto the l vectors of an orthonormal basis, we get components
for all the mapped sample points with respect to the orthonormal basis that
approximately lie between 0 and 1 [16]. These can be interpreted as measures
of membership to the respective metastable set. To turn this fuzzy and thereby
ambiguous assignment into a definite one, we define a state space element to
belong to the metastable set with the maximal membership value.

6 Adapting Hidden Markov Models

As the effort of fitting a HMM to a time series depends quadratically on the
number of hidden states, we are interested in models with small numbers of
states. Therefore we try to find as small as possible groups of dihedral angles
that can be treated as independent from the rest of the molecule. In the first
step we combine all dihedral angles into one HMM that rotate around the same
bond, as these typically have a strong coupling.

To estimate the number of hidden states we start with a definite overesti-
mate. After the Baum-Welch-iteration, we have a probabilistic decomposition
of the molecule’s shape space that is defined by the probability densities of the
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HMM. The transition matrix of the HMM defines a transfer operator on this de-
composition and we can apply Perron cluster analysis (cf. Sect. 5). This groups
the Markov states into metastable sets. In [6], these sets were reduced to single
states with mixture densities. In contrast to that, we replace the mixtures by
single von Mises distributions. The resulting HMM is again optimized using the
Baum-Welch-algorithm.

To find further correlations, we determine the Viterbi paths of all HMMs and
compute for every two paths x and y the following entropy based measure of
association [17]:

U(x, y) = 2
H(x) + H(y) − H(x, y)

H(x) + H(y)
(4)

where H(x) and H(y) are the state distribution entropies of the single paths
and H(x, y) denotes the entropy of the combined state distribution. The value of
U(x, y) will range between 0 and 1, with 0 representing complete independence;
U(x, y) = 1 on the other hand indicates complete dependence. Thus, pairs of
HMMs with high values of U are merged into one common HMM. An intial value
for this merged HMM can be generated by building all possible combinations
of states from both original HMMs. After the optimization, this HMM is again
reduced by Perron Cluster Analysis.

7 Rigid Substructures

In the following, we will propose a policy to divide the shape variations of a
molecular dynamics trajectory into long-time changes that lead to substantially
different shapes, and thermal fluctuations around those shapes. We will use
information from the HMMs that describe the various groups of dihedral angles
in the molecule.

We distinguish between trivial HMMs with only one state and HMMs with
multiple states. In case of a single state HMM, no hidden Markov chain exists
and any shape variability is expressed by the variance of the corresponding
probability density of this single state. For our purposes, we consider dihedral
angles that are described by a single state HMM to be of constant shape, i.e. we
interpret their complete shape variation as thermal noise.

If a dihedral angle is described by a HMM with multiple states, it changes
between different shapes that are characterized by the corresponding probability
densities. Therefore, the four atoms of the dihedral cannot be altogether in one
rigid structure. Nevertheless, if we consider parts of the trajectory where the
Viterbi path remains in the same state, the dihedral can be treated as constant
in these subtrajectories.

In order to perform an alignment that takes these insights about rigid sub-
structures into account, we build up a tree that specifies for every step of the
trajectory to which other steps it has to be aligned and with respect to which
atoms. Every node specifies a set of atoms, every edge corresponds to a HMM.
The atoms of a node are considered to build a substructure of constant shape.
The atoms of a child node can be added to this structure, if the trajectory is
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resolved into subtrajectories whose Viterbi paths with respect to the connecting
node’s HMM stay constant.

After the preliminary determination of all maximal rigid sets of intercon-
nected atoms, we perform the following steps:

1. Choose a rigid structure containing central atoms of the molecule to be the
root node.

2. For all leaf nodes of the tree:
– Follow the root path of the current leaf node and collect all atoms con-

tained in the nodes along the path. We will call this the current rigid
structure.

– Check all unused HMMs for a dihedral angle that overlaps in three atoms
with the current rigid structure. If a HMM meets this criterion, collect all
atoms of the dihedrals described by this HMM and remove those atoms,
that are already contained in the tree. From these atoms build a child
node of the current leaf node and associate the connecting edge with the
HMM.

– Check all unused rigid substructures for an overlap of at least 3 atoms
with the union of the current rigid structure and one of the newly created
nodes. If you find such a rigid substructure add it to the respective newly
created node.

3. While unused rigid structures exist, repeat step 2.

8 Alignment

Since visualization of conformations takes place in Cartesian coordinates, it
is necessary to assign global positions and orientations to the geometries and
thereby to define a relative alignment between them. As has been detailed for
example in [12], this can be done by superimposing the atomic positions via
rigid-body transformations. On the one hand, a reference shape can be chosen
to which all other shapes are pairwise aligned. On the other hand, an iterative
algorithm can be used that in every step aligns a shape to the current mean of
all other shapes. Although requiring some higher computational effort, this ap-
proach is superior to the first one, as it does not depend on the arbitrary choice
of a reference.

In the following, we will introduce an extension of the second approach that
uses the hierarchy of rigid structures constructed in Sect. 7. The tree of rigid
structures specifies a hierarchy of atom sets together with sets of time steps in
which the respective structure is considered to be constant. Therefore, we keep
one mean for the atoms connected to the root node. If the HMM that connects
a child node with the root has three possible states, we compute three means for
the atoms corresponding to the child node. Only those time steps contribute to
one of these means that have the same state in the Viterbi path of the HMM. If a
grandchild node of this child node is connected by another HMM that again has
three states, we have to deal with nine different mean structures for the atoms
of the grandchild, because now two Viterbi paths with three states each have
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to be considered and, as the HMMs are independent, all nine combinations can
arise.

In the following, M will denote the number of atoms in the molecule and N
the number of time steps in the trajectory. Further, we write T for the tree con-
structed in Sect. 7 and C1, . . . , CL for the rigid groups of atoms that correspond
to the nodes of T . It holds: Ck ∩ Cl = ∅, (k �= l) and

⋃L
k=1 Ck = {1, . . . , M}.

If Ck is a rigid group of atoms, then C∗
k is the union of all groups of atoms

corresponding to the nodes of T that build the connecting path from the root of
T to the node corresponding to Ck. Gk is the number of subtrajectories for which
C∗

k is considered to be of constant shape. We denote with Skg (g ∈ {1, . . . , Gk},
k ∈ {1, . . . , L}) the set of time steps that are in the respective subtrajectories.
It holds Skg ∩ Skh = ∅, (g �= h; g, h ∈ {1, . . . , Gk}) and

⋃Gk

g=1 Skg = {1, . . . , N}.
With Sk(t) we denote the set of time steps that contains a step t with respect
to a C∗

k .
Let the original cartesian coordinates of all time steps be x(t)

a , where t ∈
{1, . . . , N} indicates the time step and a ∈ {1, . . . , M} the atom. Associated
with every time step t we assume a weight factor wt and define Wkg =

∑
t∈Skg

wt

and Wk(t) =
∑

t∈Sk(t) wt. We also define the weighted barycentric coordinates

x̂(t)
a = x(t)

a −

L∑
k=1

(1 − wt

Wk(t)
)
∑
b∈Ck

x
(t)
b

L∑
k=1

(1 − wt

Wk(t)
) · |Ck|

, (5)

where |Ck| is the number of atoms in Ck.
The aligned coordinates are x̃(t)

a = R(t)x̂(t)
a + q(t), with R(t) a rotation

matrix and q(t) a translation vector. The determination of R(t) and q(t) for
t ∈ {1, . . . , N} will be described in the following. We seek an alignment that
minimizes

V =
L∑

k=1

∑
a∈Ck

∑
g∈Gk

Wkg

∑
t,s∈Skg

t�=s

wtws

W 2
kg

(x̃(t)
a − x̃(s)

a )2. (6)

This is the sum of variances of all atoms of the molecule, but, for rigid groups of
atoms where the trajectory decomposes into different sets of time steps (Gk > 1),
the variances are computed per set (Skg) and then summed up using the set
weights Wkg. Solving ∇q(r)V = 0 for r ∈ {1, . . . , N} we get

q(r) =

L∑
k=1

∑
a∈Ck

∑
t∈Sk(r)

t�=r

wt

Wk(r)
x̃(t)

a

L∑
k=1

∑
a∈Ck

(
1 − wr

Wk(r)

) (r ∈ {1, . . . , N}) (7)
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In order to determine R(r), we isolate those parts of V that depend on R(r):

−2wr

L∑
k=1

∑
a∈Ck

⎡
⎢⎢⎣ ∑

t∈Sk(r)
t�=r

wt

Wk(r)(x̃
(t)
a − q(r))

⎤
⎥⎥⎦R(r)x̂(r)

a . (8)

To minimize this term we have to perform a pairwise alignment of the barycentric
coordinates of time step r to the barycentric coordinates of the mean of all other
time steps that belong to the same alignment groups Sk(r). On this basis, we
perform the following algorithm:

1. Set R(1) = 1 and q(1) = 0.
2. Initialize all R(r) and q(r) for r ∈ {2, . . . , N} by aligning time step r to time

step 1 with respect to C1.
3. Loop over all time steps r ∈ {1, . . . , N} and recompute q(r) using (7) and

R(r) by minimizing Eq. (8), but assuming L = 1 in Eq. (7) and Eq. (8).
4. Repeat step 3, thereby continuously increasing the influence of atoms group

Ck with k > 1, but keeping the maximal change of an atom position under
a threshold by increasing the influence slow enough.

5. Stop the iteration when all atoms have full influence and the maximal change
of an atom position drops under another, lower threshold.

The computation time of a single iteration depends linearly on the number
of time steps and the number of atoms.

9 Results

To demonstrate the described algorithm we use a Hybrid Monte Carlo sampling
of a pentane molecule with 15,000 samples and another sampling of trialanine
with about 500,000 samples. The density of pentane describes nine shape clusters
of which seven are metastable conformations. The relevant shape variations of
pentane are described by two dihedral angles, each of which consists of four of
the five carbon atoms. Both have three typical values 0.4π, π, and 1.4π which
are found by fitting an HMM as described in Sect. 4. The analysis by HMMs
took about 15 minutes. Hence, the first three atoms of the first dihedral angle
can be considered to be a rigid structure. Fig. 1 shows a comparison between (1)
an alignment that only superposes these three atoms and (2) our new approach
that takes the three atoms as root structure and aligns the other two carbons
with respect to their shape groups.

The first alignment looks only on three atoms and shifts most of the tra-
jectory’s shape variance to the disregarded rest of the molecule. Thus, it gives
a clearly defined geometry for the aligned carbons, but blurs the rest of the
molecule. Our new method results in more variance for the positions of the
three base atoms, but delivers a much clearer image of the rest of the molecule.
The structure of all the nine shape clusters is clearly visible. The computation of
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Fig. 1. Comparison of alignment strategies for a trajectory of the pentane molecule

with 15,000 time steps that can be divided into 9 shape clusters. All images of a row

depict the same 3D geometry from different viewing perspectives, while the two images

in a column show approximately the same view on the geometries resulting from the

two alignment strategies. In the left and middle column, the clusters are visualized

by isosurfaces of their corresponding configuration densities. In the right column, the

complete density is visualized by direct volume rendering. Top row: alignment by min-

imizing the positional variance of three carbon atoms. Bottom row: the new approach

taking the same three carbons as the root structure which has constant shape over the

whole trajectory. For the fourth carbon, three possible positions relative to the root

structure are assumed and nine for the fifth atom.

the new alignment took about 15 seconds on a Pentium4 1.8 GHz Notebook. To
visualize the aligned trajectories we accumulate the density over all geometries
[12], where a geometry is the wireframe representation of an aligned time step.
In accumulating the density, we count for every node of a uniform grid, how
many geometries overlap with it. The densitiy is then visualized using isosur-
faces or direct volume rendering (Fig. 1). The respective visualization for the
bigger molecule trialanine is depicted in Fig. 2.

10 Conclusion and Future Work

We have presented an algorithm that divides the shape variations of a molecular
dynamics trajectory into long-time changes which lead to substantially differ-
ent shapes and thermal fluctuations around those shapes. Groups of dihedral
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Fig. 2. Comparison of alignment strategies for a trajectory of trialanine with about

500,000 time steps. The 4 most important clusters are visualized by isosurfaces of

their corresponding configuration densities. Left image: alignment by minimizing the

positional variance of 5 selected atoms. Right column: the new approach taking the

same 5 atoms as the root structure which has constant shape over the whole trajectory.

angles are analyzed by fitting Hidden Markov Models. In contrast to Perron
cluster analysis based on uniform discretizations of dihedral angles, HMMs al-
low metastable clusters with fuzzy borders. We identified the fluctuation of the
HMMs’ distribution functions with thermal fluctuations of the molecule, while
the state changes of multistate HMMs were interpreted as long-time changes.
Thus, the combination of the different states of the multistate HMMs defines
classes of different shapes. Using this decomposition we defined an alignment
strategy that tries to mimimize the variance induced by thermal fluctuations.
Thus, we got a clear depiction of the different shapes that the molecule takes
on in its long-time changes. For the entire aligned trajectory, as well as the sub-
trajectories belonging to the long-time shapes, we accumulated configuration
densities. These were visualized using isosurfaces and direct volume rendering.
All the described techniques are integrated in the visualization system Amira
[18]. Application to larger biochemically relevant molecules will be subject of
further investigation. The algorithmic complexity of the analysis by HMMs de-
pends linearly on the trajectory length and the number of atoms. The number of
necessary Markov states increases with the number of atoms and quadratically
increases the computational effort. While we succeeded in lower dimensions by
using random start condition we expect this to be problematic in higher dimen-
sions. Regarding the alignment, we are not expecting relevant problems, as it
has a linear dependence on the problem size.
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Abstract. The Basic Local Alignment Search Tool (BLAST) is one of
the best known sequence comparison programs available in bioinformat-
ics. It is used to compare query sequences to a set of target sequences,
with the intention of finding similar sequences in the target set. Here, we
present a distributed BLAST service which operates over a set of hetero-
geneous Grid resources and is made available through a Globus toolkit
v.3 Grid service. This work has been carried out in the context of the
BRIDGES project, a UK e-Science project aimed at providing a Grid
based environment for biomedical research. Input consisting of multiple
query sequences is partitioned into sub-jobs on the basis of the number of
idle compute nodes available and then processed on these in batches. To
achieve this, we have implemented our own Java-based scheduler which
distributes sub-jobs across an array of resources utilizing a variety of
local job scheduling systems.

1 The BRIDGES Project

The BRIDGES project (Biomedical Research Informatics Delivered by Grid En-
abled Services [1]) is a core project of the UK’s e-Science Programme [28] and is
aimed at developing Grid-enabled bioinformatics tools to support biomedical re-
search. Its primary source of use cases is the Cardiovascular Functional Genomics
Project (CFG) [30], a large collaborative study into the genetics of hypertension
(high blood pressure). Hypertension is partly genetically determined, and inves-
tigation of the genes and biological mechanisms responsible for high blood pres-
sure is of great importance. BRIDGES aims to aid and accelerate such research
by applying Grid-based technology. This includes security focused data access
and integration tools [2] but also Grid support for compute intensive bioinfor-
matics applications such as BLAST. The service described in this paper is based
primarily on the use case of microarray chip annotation, in which microarray
reporter sequences have to be compared against annotated sequence data (e.g.
from the human genome). These are highly compute-intensive tasks, involving
several hundred thousand input sequences and very large target databases, and
may take of the order of several weeks to compute on a single processor ma-
chine. An additional use case are BLAST runs of small batches of several tens
of sequences against standard databases such as the NCBI nt database [5].

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 241–252, 2005.
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2 Parallelising BLAST

BLAST - the Basic Local Alignment Search Tool [3] is a widely used search
algorithm that is used to compute alignments of nucleic acid or protein sequences
with the goal of finding the n closest matches in a target data set. BLAST
takes a heuristic (rule-of-thumb) approach to a computationally highly intensive
problem and is one of the fastest sequence comparison algorithms available,
yet it still requires significant computational resources. It does therefore benefit
greatly from being run in a Grid computing context providing it is parallelised,
i.e. single jobs must be partitioned into independent sub-jobs that can be run
on remote resources concurrently. In the case of BLAST (and possibly similar
sequence comparison programs) parallelisation can be achieved at three different
levels [6,7]:

1. A single query can be compared against a single target sequence using several
threads in parallel, since there are O(nm) possible alignments for a query
sequence of length n and a target sequence of length m. This approach is
implemented by default by the BLAST executable itself.

2. Input files with multiple query sequences can be parsed to provide individual
query sequences or blocks of sequences, and these can then all be compared
against multiple identical instances of the target data file in parallel.

3. With input files containing only a single query sequence, the target data can
be segmented into n copies for n available compute nodes, and then multiple
identical instances of the query sequence can each be compared to a different
piece of the target data in parallel.

There are several existing implementations which take approach 2 [7,8] or
3 [9,10,11] but none of these suited the particular requirements in this project.
One of the better known implementations of approach 3 is mpiBLAST [10,16], an
MPI-based implementation of BLAST in which the target database is segmented
into a number of fragments that the input is then compared against concurrently.
It was initially considered to include mpiBLAST on our back end resources so
that single query input could benefit from parallelisation but after preliminary
tests it was excluded from the design for the following reasons:

– The speedup described by the authors of mpiBLAST [16] appears to be
closely linked to the particular set of conditions their tests were run under
and could not be reproduced under the conditions on our clusters. Instead,
execution times actually increased when more than 10 processors were used
in the trial runs.

– mpiBLAST requires the target database to be segmented and the fragments
to be formatted ahead of the actual BLAST run. This is a compute-intensive
task which takes approximately 30 minutes for the NCBIs nt database [5],
a standard nucleotide database widely used for BLAST searches. This is a
significant overhead which is unsuitable for single, short jobs that may take
only minutes to compute. The alternative of having a predetermined number
of preformatted database fragments ready for computation on the cluster is
unworkable because of the requirements of mpiBLAST itself.
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Fig. 1. Schematic of system architecture

– The software requires n + 2 processors to be available if n database frag-
ments are to be used, and in practice this means that jobs will have to be
queued until n processors are available, leading to very significant delays
which usually outweigh any potential performance gains.

The final design therefore only included parallelization of BLAST at the level
of the input data.

3 BRIDGES GT3 BLAST Service

There is are a growing number of Grid based implementations of BLAST
[12,13,14,15], based on various Grid middleware but we here present the first
all-Java, Open Grid Service Architecture (OGSA)-based [22] implementation,
based on version 3 of the Globus toolkit. Globus v.3 (GT3) is based on the web
services programming model but services have been extended to operate in a
Grid computing context, with service data, client notification mechanisms and
statefulness as added functionality. Our GT3 based implementation of BLAST is
used in conjunction with our own meta-scheduler that allows jobs to be farmed
out to remote clusters and the results to be combined.

3.1 Basic Design

A GT3 core based Grid service is used as a thin middleware layer on top of our
application (Figure 1). The service itself has deliberately been kept basic to allow
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easy porting to other platforms since Grid computing is still very much in flux.
It therefore only uses limited GT3 functionality, with no client notification or
service data having been implemented. The only significant GT3-specific func-
tionality needed is the service factory pattern. This is a useful feature because
it provides an easy way of handling concurrency in the context of this applica-
tion, with a service instance representing a single job submitted by a single user.
The actual BLAST computation is carried out by NCBI BLAST which is freely
available from NCBI [5], and BLAST executables are preinstalled on all compute
resources since these are relatively unchanging components and therefore regular
stage-in of the executable at runtime would be a waste of resources.

3.2 Deployment and Configuration

The Grid service is deployed using Apache Tomcat running on a Linux server. To
allow easy modification of the set of compute resources available to the service,
resource details are held in an XML configuration file which is read by the ser-
vice at runtime and an array of resources are initialised accordingly. The details
of interest include the type of batch submission system, the domain name of the
resource’s head node, the number of compute nodes, memory etc. There is cur-
rently no provision of dynamic resource discovery. The system has been designed
to be easily extendible however and simply requires the XML configuration file
to be extended with new resource details.

3.3 User Interface to Service

A web portal has been designed for the BRIDGES project to allow users easy web
based access to resources and in order to avoid having to install Grid software on
end user machines. This has been implemented using IBM Websphere, currently
one of the more sophisticated portal packages. Users log in with standard user-
name and password pairs and are then presented with a job submission portlet.

3.4 Scheduler and Input Data Segmentation

For the purpose of this project we decided to provide our own scheduler since at
the time of designing the application Grid meta-schedulers were rare and none
were available that satisfied our requirements with respect to the particular com-
bination of OS and batch submission system on our resources (n.b. ”resource”
here denotes a computational back end such as a compute cluster).

Our scheduler can take an unlimited number of resources as an argument
and uses the following algorithm to distribute subjobs across these:

parse input and count no. of query sequences
poll resources and establish total no. of idle nodes
set no. of sub-jobs to be run to equal no. of idle nodes
calculate no. of sequences n to be run per sub-job (= no. of
idle nodes/no. of sequences)
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while there are sequences left
save n sequences to a sub-job input file

if the number of idle nodes on the whole Grid is 0
make up small, predetermined number of sub-jobs and
evenly distribute these into queues across resources

else
for each resource

send i subjobs to the resource(i = no. of idle
nodes at the resource)

when all subjob results are complete, combine them into a single
result file using the original input sequence order

return combined output file to the user

Thus, the system will always make use of the maximum number of idle nodes
across resources if multiple query sequences exist. Load balancing is achieved by
assigning only as many sub-jobs to a resource as there are idle nodes, and by
making all input files roughly the same size.

3.5 Compute Resources and Wrapper Classes

eGrid computing environments usually feature a heterogeneous mixture of back
end resources [23] and their associated operating systems, and the resources
available to this project are typical in this respect. The requirement arising from
this is that the Grid meta-scheduler must be capable of submitting jobs to the

Fig. 2. BRIDGES Web portal showing the job submission portlet for the distributed

BLAST service
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resources via a number of wrapper components that feature shared functionality.
The minimum functionality that a basic job submission system requires consists
of 3 elements: job submission, job monitoring and job cancellation.

Our design satisfied these requirements through the use of an abstract Re-
source class which was then extended with wrappers that provided the above
functionality for each type of back end batch system. We implemented Java
wrappers for the Condor [19] and PBS [18] batch systems as well as for Globus
2 server side installations [24]. The Resource class contains abstract methods
for job submission, job monitoring and cancellation, with the wrappers provid-
ing concrete implementations of these for the specific back end systems. In the
case of the PBS and Condor batch systems we used the respective client pack-
ages provided with PBS and Condor and wrapped the relevant commands there
as native processes in Java, using the java.lang.Runtime and java.lang.Process
classes. In the case of the wrapper for Globus 2, we used the Java Commodity
Grid Kit version 1.1 [25], which provides a convenient and easy-to-use high-level
API for job submission to GT2 resources.

The actual resources available to the project included:

– Our local Condor pool at the National e-Science Centre Glasgow, a small
cluster of 21 single processor desktop machines (Intel Celeron processor, 512
mb RAM)

– ScotGRID [17], a 250 processor compute cluster located at Glasgow Uni-
versity comprising IBM xSeries nodes (X330, X335, X340, X370) and Dell
Poweredge 2650 machines with 15TB disk storage

– The recently formed National Grid Service (NGS) of the UK [26], a Grid
consisting of currently 6 compute clusters distributed over the UK, intended
to support the needs of the scientific computing community in the UK

3.6 Access to Resources

A typical feature of compute Grids are complex sociological and economic issues
revolving around the use and access of Grid resources. In particular, resource ac-
cess and usage are potentially sensitive issues which require careful consideration
and a set of tools designed to implement those policies.

Policies and authentication. In this project’s resource set, access policies dif-
fered significantly between resources. The Condor pool owned by NeSC Glasgow
is effectively open to any user that has created an account on the BRIDGES
portal and is the default resource available to all users and therefore does not
require any authentication mechanism. There are, however, restrictions on the
kind of jobs that can be executed there, which are enforced through providing
application-specific rather than generic user interfaces (see section 3.3 on user
front ends above). ScotGRID requires user registration through the support staff,
and users then log on to the service using their ssh credentials. The UK National
Grid Service allows any person in academia access after having registered with
a local representative of the certification authority. The identity of the user is
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Fig. 3. BRIDGES security infrastructure for job submission onto the NGS nodes

backed up by a digital certificate and private key issued by the certification au-
thority, and access to the resources is permitted through a user proxy that has
been created from the users credentials.

One of the project requirements was that user authentication should not
cause any additional learning or usability overheads for the users. Biology end
users range widely in computer literacy and therefore systems providing a single
mechanism for users of all abilities should aim at the lowest level of literacy.
The process of obtaining and caring for digital certificates for the National Grid
Service is currently still rather involved and requires familiarity with command
line tools and a generally advanced level of computer literacy. It was therefore
decided to remove digital certificates from the end user environment altogether
and replace them with simple username and password authentication at a central
project web portal (see section 3.6 below). GSI authentication at NGS resources
is instead being carried out by means of a host proxy generated from the Grid
servers host credentials (Fig. 3). The host’s identity is then mapped locally to a
project account in the local gridmap file. Thus, all jobs run under the project’s
identity on the NGS resources, and the logging and monitoring of user activity
are the responsibility of the BRIDGES support staff.

Authorisation. Once a user is logged on, they have access to the complete set
of tools available on the project portal. The finer grain control of what back end
resources associated with a tool are accessible for a given user is implemented
through the Grid authorisation software PERMIS [27]. PERMIS provides an en-
hanced Grid authorization infrastructure which allows to define policies about
what resources users are allowed to access and subsequently use. This extends
most Grid based security infrastructures which focus predominantly on authen-
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tication of users. In our solution, the identity of the user submitting the job can
be extracted from the portal context, and is passed on with the job request (Fig.
3). The Grid server sends a lookup request to a dedicated LDAP based PERMIS
authorisation server maintained by the project team, where secure (signed) at-
tribute certificates are used to store information about the roles associated with
given users and in turn the resources/privileges that are associated with that role.

This way of using PERMIS is different from the standard method but allows
us to obtain user authorisations from any code base, and does not rely on the
query coming from a GT3.3 service as specified by the current PERMIS model.
There, the PERMIS service is queried directly by a GT3.3 service which contains
the actual methods to be authorised, and which is tied into PERMIS through
its deployment descriptor. Here, we are using the PERMIS service as a loosely
coupled lookup service instead. In order to allow this, a fictitious service name
needs to be created and a number of fictitious methods attached to it that
PERMIS can then query. The code can then iterate over the set of fictitious
methods to establish what a user is allowed to do.

We have defined three policies which are used to restrict access to the com-
putational resources. The default policy for users who do not have the right to
access ScotGrid or NGS resources, is that they are only able to access the NeSC
Glasgow Condor pool. A policy is defined for users with a ScotGrid account
which provides those users access to the ScotGrid and additionally the Condor
pool. A third policy has also been defined which extends the authorized resources
to include the National Grid Service.

It is important to note that the checks on user access to these resources
are completely transparent to users. They simply select the target database and
input sequences used in the BLAST search, and the selection of resources is done
automatically.

3.7 Target Databases

Grid based file transfer is potentially time-consuming and the favourable option
is to keep frequently used data cached locally, close to the computation. In the
case of BLAST this is readily achievable since most users blast against a small
number of publicly available target databases (available as flat text files for
ftp download, e.g. from NCBI [5] or EBI [4]). Typically, the databases are in
the order of gigabytes, with some of them growing exponentially [21]. The data
can be stored on the local NFS of the compute resource and updated regularly
through automated scripts.

4 Performance Evaluation

One of the main objectives of creating this service was, along with the ability
to execute batch BLAST jobs remotely, to improve BLAST execution times
for large jobs. BLAST is computationally costly and large batch jobs such as
those supported in this project can take of the order of weeks to compute. To
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evaluate the speedup that can be obtained we conducted a simple experiment
which compared the execution times of different sized jobs between a single CPU
and our compute Grid.

4.1 Experimental Setup

We randomly selected a set of 100 nucleotide sequences from the mouse EST
database from NCBI [5]. From this, three input files containing 1, 10 and 100 se-
quences were generated. These files were run against the nt nucleotide database,
also obtainable from NCBI. This is a large database (currently approx. 12 gb
uncompressed) that most researchers compare their sequences against, and con-
tains entries from all traditional divisions of GenBank, EMBL and DDBJ. The
BLAST options used were as follows:

-e 0.01 (set e-value to 0.01)
-w 7 (set word size to 7)
-b 0 (suppress alignments)
-T (HTML output)
-p blastn (use blastn program)

Each run was repeated three times on each a single CPU machine and on the
BRIDGES compute grid. The single CPU machine has a single Intel Celeron
2.20GHz processor and 512 mb of RAM, and runs Fedora core 2. The resources
utilised on the compute grid included:

– the NeSC Condor pool (see section 3.5 above) – specs identical to those of
the single CPU machine

– ScotGRID (see section 3.5 above) – mixed specs, see
http://www.scotgrid.ac.uk/equipment/ for details

– the NGS (see section 3.5 above) compute nodes at Oxford and Leeds – worker
node specs dual 3.06GHz Intel Xeon CPUs, 2 gb memory

For the grid jobs, it was ensured prior to the run that at least the same number
of processors were available on the grid as the number of input sequences, which
results in the maximum number of subjobs (1, 10 and 100 respectively) as input
sequences and therefore maximum performance. If fewer processors are available
than input sequences, the scheduler will package several input sequences into
each input file and execution time will then increase.

4.2 Results

The results of the benchmarking runs are shown in Fig. 4. For the single sequence
job, there was no difference in execution times between repeat runs or between
Grid and single CPU – all of these took 6 minutes to execute each. Repeat
runs on the single CPU machine consistently produced the same execution time
across all three sizes of job, with jobs taking 6, 55 and 668 minutes respectively
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Fig. 4. Results from benchmarking experiments. Figure shows BLAST execution times

in minutes, plotted against the number of sequences in the input file. The left column

of each pair represents the result obtained with the single CPU machine, the right hand

column that of the Grid job. Error bars = +1 SD

for the 1, 10 and 100 input sequence files. For the Grid jobs, there was some
variation in execution times, with values ranging from 10 to 14 minutes and 47
to 66 minutes for the 10 and 100 sequence jobs respectively.

4.3 Discussion

The results clearly show a marked performance increase when jobs were sched-
uled on the Grid, with the speedup factor (= single CPU execution time divided
by Grid execution time) ranging from 3.9 to 5.5 and 10.1 to 14.2 for the 10 and
100 sequence jobs respectively. However, in theory the values for the speedup
should be much closer to the number of input sequences used since each subjob
only contained a single sequence and all subjobs were intended to be processed
concurrently. In practice, however, the job submission policies implemented at
the back end compute clusters degrade performance very significantly. On most
resources policies are in place which limit the number of jobs that a single user
can run at the same time, and the resources used here are no exception. This
leads to a loss of concurrency, despite the apparent availability of free processors,
with jobs starting at time offsets and thereby increasing overall execution time.

In addition to this there are time penalties incurred by the process of instan-
tiating a service object (approx. 15 s with the Globus toolkit v.3), uploading
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and parsing the input, configuring and scheduling the job, staging input files in
to the resources and combining the result at the end of the overall job. For the
most minimal of jobs (running a synthetic sequence of 10 bp against a small
bacterial genome such as that of E. coli) this amounts to a total of approx. 40s
of overheads, and this amount increases proportionally with both the size of the
input and the size of the target database. However, as job size increases the
proportion of the overall execution time taken up by these overheads diminishes
and becomes increasingly insignificant.

The major loss of performance observed here exemplifies one of the major
challenges in Grid computing, which is of a logistic and sociological nature rather
than technical. In devising scheduling policies, a trade-off must be struck between
availability of resources to all users, and performance for the individual user. If
individual users are allowed to submit unlimited numbers of jobs to a resource
this may lead to the resource becoming unavailable to all other users, potentially
for an extended period of time. Conversely, restricting resource uses for the
individual user can be a frustrating experience if no other jobs are intended to
be submitted any time soon by others but submission policies enforce a rigid
load limit nevertheless.

5 Future Work

Grid computing is still in its early stages and the middleware toolkits available
to developers are still undergoing major architectural changes [20]. Since the be-
ginning of this project, the Globus Alliance has released several minor versions of
GT3 and now a new major version, GT4 [29]. The current service should now be
ported to GT4 to avoid problems regarding support etc. GT4 is a move towards
greater homogeneity in the field of web/Grid services and has the support of
several major industry partners. We plan to explore these solutions later within
the recently funded Scottish Bioinformatics Research Network [31] and in the
on-going efforts to establish a Scottish Grid Service which we expect to become
another full node of the UK National Grid Service in 2006.
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Abstract. We consider the problem of selecting and tuning learning
parameters of support vector machines, especially for the classification
of large and unbalanced data sets. We show why and how simple models
with few parameters should be refined and propose an automated ap-
proach for tuning the increased number of parameters in the extended
model. Based on a sensitive quality measure we analyze correlations be-
tween the number of parameters, the learning cost and the performance
of the trained SVM in classifying independent test data. In addition
we study the influence of the quality measure on the classification per-
formance and compare the behavior of serial and asynchronous parallel
parameter tuning on an IBM p690 cluster.

1 Introduction

Support vector machines (SVMs) are one of the well accepted machine learning
methods [1]. Numerous experiments have confirmed that the linear learning ap-
proach in combination with problem adapted implicit feature mappings leads to
highly reliable nonlinear classification functions. Much work has been done to
make SVM algorithms run very fast [2].

In recent years, however, a significant number of nontrivial problems has
surfaced in the context of SVMs. The size of the classification problems increases
rapidly, while at the same time better results are desired. The quality issue is
particularly important if the data sets are unbalanced, which means that either
the number of positive and negative data differ significantly, or the cost of a
false positive classification differs significantly from the cost of a false negative,
or both. Often, the differing costs of misclassifications have been neglected, and
the success of a particular approach has been measured only by totaling the
number of incorrectly classified test points.
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Support vector machine classification involves a learning phase, in which the
training data are used to adjust the classification parameters. This procedure,
which can be formulated as a quadratic programming problem, is controlled by
a—typically very small—set of learning parameters. Usually these have to be set
by the user. Quoting [3], “There is a lot of papers published about the SVM algo-
rithms and kernel methods, but very few of them address the parameters tuning
to get the high quality results usually presented [. . . ] these results are difficult to
reproduce because of the influence of the parameter settings.” In addition, it is
often not clear which quality measure had been used.

In this paper we address the classification of large unbalanced data sets with
SVMs, taking the differing costs of misclassifications into account. Large data
sets feature two properties that are important for the training. On the one hand,
they allow considering models with a higher number of learning parameters, so
that nonlinearity can be captured more precisely than with models involving only
a few parameters. (For smaller data sets, the number of parameters is limited by
overfitting effects.) Finding appropriate values for many parameters, however,
can no longer be done by hand or simple grid search, but must be automated. To
this end we embed the learning in a numerical optimizer, which repeatedly trains
an SVM with different settings of the learning parameters and strives to find
parameters that optimize a suitable quality measure; see Section 3 for details.
The overall procedure for adjusting the learning parameters and classification
parameters is summarized in Figure 1. Note that evaluating the quality measure
involves validating the SVM on data different from the training data.

The negative effect of large data sets is the high computational complexity.
To reduce the overall learning time, each SVM training is done with a highly
efficient quadratic program solver, and a parallelized optimizer is used for tuning
the learning parameters; see Sections 2 and 4. In Section 5 numerical experiments
with a large, hard classification problem will show that our automated approach
is able to yield good results in a reliable manner. This is important for users from
other fields because our method requires no human interaction and no familiarity
with the underlying SVM theory to tune the SVM to a particular classification
problem.

efficient SVM
validation with 
QP solver

quality
measure

parallel
numerical
optimizer

final
learning
parameters

initial
learning
parameters

updated
learning
parameters

final SVM
training

final
classification
parameters

Fig. 1. Main components of the SVM system
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2 Support Vector Learning

The task of support vector learning is to determine functions that can be used
to classify data points. In this paper we consider only binary problems and leave
out multi-class learning and regression. In the binary case support vector learn-
ing is the process of using so-called reference data of given input–output pairs
{(xi, yi) ∈ R

n × {−1, 1}, i = 1, . . . , l} to find an optimal separating hyper-
plane wT x + b = 0. Using assumptions of statistical learning theory the desired
classifier is then defined as h(x) = sgn(f(x)) with the linear decision function
f(x) = wT x + b; see [4,5] for details.

If the data are not linearly separable then a kernel K : IRn × IRn → IR is
used to learn a nonlinear decision function

f∗
nonlin(x) =

∑
i:0<αi

yiα
∗
i K(xi, x) + b∗.

Here the classification parameters α∗
i and b∗ are given by the unique global

solution of a suitable (dual) quadratic optimization problem [5]

min
α∈Rl

g(α) :=
1
2
αT Hα −

l∑
i=1

αi (1)

with H ∈ IRl×l, Hij = yiK(xi, xj)yj (1 ≤ i, j ≤ l), constrained to

αT y = 0, 0 ≤ α ≤ C. (2)

The kernel function K must be provided by the user.
Note that the the Hessian H is usually dense, and therefore the complexity of

evaluating the objective function g in (1) scales quadratically with the number
l of training pairs, leading to very time-consuming computations. A well-known
method for the solution of such problems is the decomposition algorithm [6]
that repeatedly selects a subset of the free variables and optimizes (1) over these
variables. Its main advantage is the flexibility concerning the size of the sub-
problems. Decomposition provides a framework for handling large SVM training
tasks but it does not define how to solve the reduced quadratic programming
problems. To obtain good overall times it is necessary to have efficient QP solvers
for the subproblems. We use our own implementation of the projection method
described in [7]. This method is suitable for large data sets. It defines problems
with diagonal matrices and solves them iteratively with a fast inner solver [8].
Thus a single optimization step of the decomposition method becomes very fast.

3 Learning Parameters and Quality Management

The constraints (2) involve learning parameters Ci, i = 1, . . . , l, which have to be
chosen before SVM training. Often a single value Ci ≡ C is used for simplicity. In
[9] the authors gave evidence that for unbalanced data sets at least two values
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should be used: Ci = C+ if the ith training point is positive (yi = +1), and
Ci = C− otherwise (yi = −1). In addition to correcting different sizes of the
two classes, the (C+, C−) model can also capture different costs of false positive
and false negative classifications. Since the data set treated in Section 5 is even
more unbalanced than the example in [9], with a very small number of positive
points, we again used the (C+, C−) model.

In addition to this weighting approach we consider generalizing the kernel
function. One of the most commonly used functions is the Gaussian kernel,

KG(x, z) = exp
(
−
∑n

k=1(xk − zk)2

2σ2

)
(x, z ∈ IRn), (3)

where the standard deviation σ > 0 is chosen identically for all features of the
data. The reason is again that hand tuning of the learning parameters requires
their number to be very small.

If the learning parameters can be adjusted automatically then their number
can be increased, and in the extreme case we may assign a different standard
deviation to each feature [9]:

KG(x, z) = exp

(
−

n∑
k=1

(xk − zk)2

2σ2
k

)
. (4)

As a reasonable compromise between (3) and (4), one might divide the features
into different groups (such as “binary” and “continuous”) and assign one σ value
to each group.

Comparing SVMs trained with these extended models to SVMs trained with
the usual uniform approach confirms that the added complexity indeed leads
to better classification results. Interestingly, allowing different σ values for the
features can also yield additional information. Based on the optimized value σk

one can estimate the relevance of the corresponding feature k, and thus one gets
an implicit feature selection mechanism for free. To our knowledge, however, the
option of tuning different σ values in the context of support vector learning has
not been considered elsewhere.

We also work on other generalized kernels and on other parameters that are
relevant for the training phase. For example, the decomposition method and the
QP solver use several internal parameters, which may be tuned to enhance the
performance [6,7]. Both issues cannot be discussed here due to space limitations.

The tuning of the learning parameters can be implemented by optimizing
a certain quality measure, which is obtained in validation steps. Optimizing a
nontrivial parameter model is almost impossible if a discrete quality measure is
used, e.g., the number of validation errors. Following the ideas in [9] we use the
continuous effectiveness measure

Eβ = 1 − (β2 + 1)pr · se
β2 · pr + se

∈ [0, 1], (5)

which we have to minimize. The sensitivity se (which percentage of the positive
data have been recognized ?) and the precision pr (which percentage of the points
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that have been classified “positive” are indeed positive ?) are computed with a
special smooth error measure. The quantity β can be used to enforce or diminish
the influence of sensitivity. In Section 5 we will present results achieved with (5)
for different values of β and discuss the problem of defining the quality measure.

4 Automatic Parallel Parameter Optimization

Tuning a nontrivial number of parameters can be very time consuming, and
therefore it is reasonable to use parallel computing resources. There are three
ways to insert parallelism during the SVM model selection stages: parallelizing
the training of a single SVM, training several SVMs in parallel, and using a paral-
lel algorithm for parameter optimization. Concerning the first option, promising
parallelization techniques for decomposition methods exist [10], whereas parallel
SMO [2] methods are currently investigated, but seem not to be reliable yet. The
second option has also been addressed with mostly straight-forward approaches,
e.g., parallel mixture of SVMs [11], parallel training of binary SVMs for multi-
class problems [12], and parallel cross validation models [13]; see [3] for a short
overview.

Concerning parallel parameter optimization, ongoing work is on parallel grid
search techniques [14]. Grid search uses a predefined set of values for each param-
eter and determines which combination of these values yields the best results.
Thus parallel grid search is an easy and perfectly scalable method that needs no
communication at all. Unfortunately this approach scales exponentially in the
number of parameters and therefore is applicable only for very simple models.

Since we are interested in tuning complex models with larger numbers of pa-
rameters, we rely on an efficient numerical optimizer instead. We decided to use
the APPSPACK [15] software for this task because it does not require derivatives
of the objective function and because an MPI-based parallel version is available.
Parallelism is achieved by assigning evaluations of the objective function Eβ to
different processors, the so-called workers. Note that each evaluation of Eβ re-
quires a complete cross-validation, which means i) to train SVMs on different
training points for a given set of learning parameters, ii) to validate the trained
SVMs on different test points and iii) to compute the quality measure. Based on
these values, the optimizer selects new promising search directions in the param-
eter space and checks for convergence. Good load balancing is achieved by using
an asynchronous scheme. Currently we exploit only the parallelism provided by
APPSPACK ; the training of single SVMs and the validation routine have not
yet been parallelized.

Mapping of SVM Learning onto the APPSPACK Environment. The
APPSPACK software package is freely available. A configure script automat-
ically locates the commands and system files that are required for compiling
and installing the package, and automatically generates appropriate makefiles.
Due to some IBM-specific settings these makefiles could not be used directly
for building the libraries and executables for our machine, but a few additional
steps had to be done. More details on the JUMP supercomputer will be given
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in Chapter 5. Once we had successfully configured APPSPACK we built the
libraries and executables by using the makefiles. All in all the installation of
the software is easy and the APPSPACK developer team gives instructions if
requested.

The second step consisted of integrating SVM learning into the APPSPACK
framework. This required only minor changes of the SVM code because the exe-
cutable just has to read a file containing values for all parameters, to evaluate the
objective function Eβ , and to provide an output file which should contain either
a single numeric entry that is the function value or an error string. APPSPACK
is able to generate the input files and to read the output without additional
instructions. Please note that the optimizer examines the function values exclu-
sively, whereas the underlying simulation is not of any interest. Thus its usage
is easy to realize for support vector learning and any other supervised machine
learning algorithm. The users’ final task is to provide an apps-file containing the
relevant solver information like

– the number of parameters,
– lower and upper bounds for them (infinite bounds are allowed), and the
– executable name.

Optionally one can set

– the initial parameter vector for a hot start,
– the maximum number of evaluations,

and many more. Some examples are provided, too. For the parallel version the
number of workers ω is deduced from the submission of the MPI job via ω =
proc − 1, where proc is the number of processors. A single CPU, the master, is
used to assign work, i.e., trial points, to the workers. APPSPACK is robust due
to the toleration of error strings. Even if a single function evaluation fails, the
optimization won’t stop. For our quality measure (5) such a situation may occur
in the case pr = se = 0, when Eβ is not defined.

In the following section we will also compare results of the serial and parallel
version to show drawbacks and advantages of both methods. To our knowledge
this is the first presentation of work on parallel numerical optimization of non-
standard SVM parameters.

5 Results and Discussion

The numerical experiments were performed with the so-called thyroid data set
available from [16]. There are 7200 instances with 15 binary and 6 continuous
attributes. The task is to determine whether a patient is hypothyroid. Therefore
one class, representing 93% of the data, has the characteristic “not hypothyroid”.
The remaining instances are considered to belong to a single class “hypothyroid”,
even if a closer inspection would allow to classify them further as either “hyper-
function” or “subnormal functioning.” This merging is usually proposed, and
sometimes the dataset is even distributed in this form with the task of finding
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hypothyroid persons. Note that the merging of classes is somewhat critical as we
do not know the level of similarity between them. However we try to design a
sensitive binary classifier that is able to find as many hypothyroid points as pos-
sible. In addition to grossly unequal class sizes, the data set is unbalanced with
high cost for false negative results. In [16] the data is already partitioned into a
training set of 3772 points and a test set of 3428 points. Since the percentage of
positive and negative instances in the proposed training set is compatible with
the overall distribution we didn’t change this partitioning.

The thyroid data set was used in [17] for performance analysis of multilayer
neural networks. The best net reached a classification performance of 95%. It
was also stated that due to the imbalance of the data a learning method must
perform better than 93%. This is true only for scenarios where errors have always
the same weight and are not considered separately. Unfortunately, [17] does not
give data concerning the distribution of the errors. In [18] the performance of
SVMs for the same data set is given. Standard SVMs achieved between 93% and
95% accuracy on the test set. There the SVM results were compared with results
on fuzzy SVM learning. The latter approach led to classification rates between
95% and 97%. Again, the distribution of the errors was not specified.

Our numerical experiments were performed on the Juelich Multi Processor
(JUMP) at Research Centre Juelich [19]. JUMP is a distributed shared memory
parallel computer consisting of 41 frames (nodes). Each node contains 32 IBM
Power4+ processors running at 1.7 GHz and 128 GB shared main memory. All
in all the 1312 processors have an aggregate peak performance of 8.9 TFlop/s.
Since we used a single node of JUMP for our tests, the APPSPACK manager
process could assign jobs to 31 workers.

Throughout the tests, some control parameters were kept fixed. For the de-
composition method in the SVM training we chose a working set size of 100,
and the stopping criterion was defined according to [6] with ε = 0.001. The qual-
ity measure Eβ was computed via a simple twofold cross validation. We did not
specify a starting point or a maximum number of evaluations for APPSPACK. In
contrast to some published results, we kept training data and test data strictly
separated. The former were used only for validating and training the SVMs,
and the latter were used only for assessing the quality of the final optimized
SVM.

The Influence of the Quality Measure. One of the most challenging prob-
lems for unbalanced data sets is to find a reasonable trade-off between high
sensitivity and high precision. In our quality measure Eβ the relative weight of
these two important goals is controlled by the parameter β. Since increasing
β gives more weight to sensitivity, we expect a reduction of the false negative
points, at the cost of a potential growth of false positive results. Indeed the data
obtained with a single-σ model confirm this expectation; see Table 1.

Since in our example the cost for false negative classifications is significantly
higher than for false positive, we are primarily interested in sensitivity, so a
higher value of β should be used. Small values for β led to good overall results
with increasing numbers of false negative points. Note that the 98% test per-
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Table 1. Test results for different quality measures

β 0.5 0.75 1.0 1.5 2.5

trial points 125 79 75 78 62
function evaluations 101 62 58 60 46
Eβ 0.092 0.102 0.108 0.099 0.072
training errors 48 51 88 120 170
σ 91.15 52.05 28.84 25.75 64.42
C+ 100000 100000 10280 39670 100000
C− 21790 19560 1000 1000 1000
ratio C+/C− 4.6 5.1 10.3 39.7 100
false negative test points 7 5 4 3 1
false positive test points 63 68 99 134 196
test sensitivity 97% 98% 98% 99% 100%
overall test errors 70 73 103 137 197
test performance 98% 98% 97% 96% 94%

formance compares favorably with the results obtained with neural networks or
fuzzy SVMs.

Even if sensitivity is important, at some point the attempt to reduce the false
negatives further leads to so many additional false positives that the overall cost
increases again. This reflects the fact that for large and very unbalanced data
sets it is dangerous to optimize only sensitivity because this can lead to weak
classifiers. In certain situations, however, it can be important to be able to
design very sensitive classifiers, e.g., when false positive points can be located
by experiments after classification. Possibly the overall performance might also
be improved further with another quality measure or with very small values β,
but these issues have not yet been investigated.

The Optimal Ratio of C+ and C−. While unequal evaluation of slack
variables during training seems to be accepted universally in the field of support
vector learning [20], detailed descriptions of results or of the effects of this model
generalization are not available. Thus tuning of these parameters is not trivial,
if done by hand. Since the ratio of positive and negative points is about 7% the
natural weighting choice [9] would be C+/C− ≈ 14. However the data in Table 1
indicate that this ratio is not adequate for minimizing either the total number
of errors or the sensitivity. The C+/C− ratios given in the table were delivered
automatically by the numerical optimizer. One can see that the ratio increases
for larger values of β, which is exactly what one would expect.

Computational Cost. Simple tuning methods like grid search are very pop-
ular due to the predictable number of training stages. In Table 1 we show the
number of steps for automatic parameter tuning. Not all trial points gener-
ated by APPSPACK led to a new function evaluation (cross validation) because
sometimes points were regularly pruned or function values in the cache could
be reused. For optimizing 3 parameters we had to do between 46 and 101 cross
validations, which is at least one order of magnitude less than any reasonable
grid search would need.
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Generalized vs. Standard Kernel. In Section 3 we showed how the stan-
dard Gaussian kernel can be extended by using different standard deviations
for (groups of) the features. The thyroid data have 21 features, of which 15 are
binary and 6 are continuous. Therefore we used two kernel parameters σbin and
σcont. In Table 2 we compare the results to those for the standard kernel with
a single parameter σ. For both runs we used β = 1.5. The number of function
evaluations for optimizing the generalized model is more than twice as large as
for the 3-parameter model. On the other hand, the cost-sensitive quality mea-
sure Eβ could be reduced. This improvement could be seen in the final test, too.
Both the false negative and false positive classifications could be lowered.

Table 2. Comparison of the standard and the generalized kernel

model standard generalized

function evaluations 60 140
Eβ 0.108 0.098
σ 25.75 —
σbin — 72.16
σcont — 31.38
C+ 39670 13380
C− 1000 1000
ratio C+/C− 39.7 13.4
false negative test points 3 2
false positive test points 134 110
overall errors 137 112

From σcont < σbin we conclude that the significance of the binary features is
high in comparison to the continuous values. It is interesting to see that σ = 25.75
is not between the two new σ values.

Serial vs. Parallel Optimization. The training time for a single SVM can
vary significantly depending on the values of the learning parameters. For ex-
ample, it is known that larger values of C lead to longer training times. Asyn-
chronous parallel pattern search (APPS) is a parallel optimization approach
that is well suited to such situations since it does not synchronize the system at
the end of every single iteration. The cost for the good load balancing is some
additional function evaluations in the parallel mode.

Results in [21] indicate a small number of additional function evaluations for
multi-processor APPS. By contrast, our results in Table 3 for β = 0.75 show
that the number of function evaluations in parallel mode can be significantly
larger than in serial mode so that the efficiency is reduced. Usage of 8 processors
led to 80 function evaluations, which is 60% more than with the serial version.
However, usage of 8, 16 or 32 CPUs decreases overall running time of SVM
parameter tuning.

During the tests we observed an increasing number of workers without a job,
i.e., more and more processors did no longer receive trial points for function
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Table 3. Overhead for parallel optimization

mode serial 7 workers 15 workers 31 workers

function evaluations 49 80 62 62
Eβ 0.102 0.101 0.102 0.102
training errors 50 50 51 51
σ 62.88 72.16 52.05 52.05
C+ 69060 100000 100000 100000
C− 13380 19560 19560 19560
ratio C+/C− 5.2 5.1 5.1 5.1
false negative test points 4 4 5 5
false positive test points 74 74 68 68

evaluations. This is due to caching effects and the decreasing number of new
trial points during the final steps. Thus the asynchronous scheme cannot sustain
a large degree of parallelism when the system is near convergence.

The optimization results in terms of accuracy, however, depend only slightly
on the number of processors. The number of training errors is nearly the same
for all tests. Misclassifications in the test set differ only a little bit and the values
of our quality measure are nearly equal for all tests. Note that the parallel mode
yields larger values for C+ and C−, whereas their ratio remains almost constant.
This is a very interesting detail and gives evidence to the assumption that the
ratio C+/C− should always be considered, too. The most significant differences
between serial and parallel optimization with APPSPACK can be seen in the σ
values. They differ in both directions up to 20%.

Please note that SVM training for a fixed set of parameter values can be
formulated as a global optimization problem with a single optimum, but the task
of parameter tuning might lead to a large number of local minima. Since we are
interested in robust methods for SVM parameter tuning it might be interesting
to analyze in future tests APPSPACK ’s ability to avoid local minima.

6 Conclusions and Future Directions

We have introduced an automated parameter optimization scheme for support
vector learning. Our scheme is to a wide degree portable and can be adapted
very easily. The APPSPACK software is freely available and runs on different
platforms in serial and parallel mode. While we have used our own implemen-
tation of support vector learning, using publicly available SVM software is also
possible; [14] might be a good choice. We have shown results for different quality
measures, different models with varying numbers of parameters, and serial and
parallel computing mode.

In the future we plan integrating different kernels into a single SVM model
and a hierarchical parallelization combining parallel SVM training with parallel
parameter optimization to speed up the model selection even more.



Parallel Tuning of Support Vector Machine Learning Parameters 263

Acknowledgements

We would like to thank Tamara Kolda for continuous help with APPSPACK -
related questions. We are grateful to Wolfgang Frings, Inge Gutheil, Ruth Zim-
mermann and the ZAM team at Juelich for technical support, several remarks
and careful reading. We also would like to thank the unknown referees for their
valuable comments.

References

1. Vapnik, V.N.: Statistical learning theory. Wiley & Sons, New York (1998)
2. Platt, J.: Fast training of support vector machines using sequential minimal opti-

mization. In Schölkopf, B., Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel
Methods — Support Vector Learning, Cambridge, MA, MIT Press (1999) 185–208

3. Poulet, F.: Multi-way distributed SVM algorithms. In: Proc. of ECML/PKDD 2003
Int. Workshop on Parallel and Distributed Algorithms for Data Mining. (2003)

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge,
UK (2000)

5. Schölkopf, B., Smola, A.J.: Learning With Kernels. MIT Press, Cambridge, MA
(2002)

6. Hsu, C.W., Lin, C.J.: A simple decomposition method for support vector machines.
Machine Learning 46 (2002) 291–314

7. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic
programs and applications in training support vector machines. Optimization
Methods and Software 20 (2005) 353–378

8. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Mathematical Programming 46
(1990) 321–328

9. Eitrich, T., Lang, B.: Efficient optimization of support vector machine learning pa-
rameters for unbalanced datasets. Preprint BUW-SC 2005/2, University of Wup-
pertal (2005)

10. Zanghirati, G., Zanni, L.: A parallel solver for large quadratic programs in training
support vector machines. Parallel Computing 29 (2003) 535–551

11. Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of SVMs for very large
scale problems. Neural Computation 14 (2002) 1105–1114

12. Selikoff, S.: The SVM-tree algorithm (2003) http://scott.selikoff.net/papers/
CS678 - Final Report.pdf.

13. Celis, S., Musicant, D.R.: Weka-parallel: machine learning in parallel. Computer
Science Technical Report 2002b, Carleton College (2002)

14. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

15. Gray, G.A., Kolda, T.G.: APPSPACK 4.0: asynchronous parallel pattern search
for derivative-free optimization. Sandia Report SAND2004-6391, Sandia National
Laboratories, Livermore, CA (2004)

16. Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases.
(1998) http://www.ics.uci.edu/∼mlearn/MLRepository.html.

17. Schiffmann, W., Joost, M., Werner, R.: Synthesis and performance analysis of
multilayer neural network architectures. Technical Report 16/1992, University of
Koblenz (1992)



264 T. Eitrich and B. Lang

18. Inoue, T., Abe, S.: Fuzzy support vector machines for pattern classification. In:
Proc. Intl. Joint Conf. Neural Networks (IJCNN’01). (2001) 1449–1454

19. Detert, U.: Introduction to the JUMP architecture. (2004) http://jumpdoc.fz-
juelich.de.

20. Markowetz, F.: Support vector machines in bioinformatics. Master’s thesis, Uni-
versity of Heidelberg (2001)

21. Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for
nonlinear optimization. SIAM Journal on Scientific Computing 23 (2001) 134–156



The Architecture of a Proteomic Network in the Yeast�

Emad Ramadan1, Christopher Osgood2, and Alex Pothen1

1 Computer Science Department, Old Dominion University,
Norfolk, VA 23529, USA

{eramadan, pothen}@cs.odu.edu
2 Biological Sciences Department, Old Dominion University,

Norfolk, VA 23529, USA
cosgood@odu.edu

Abstract. We describe an approach to clustering the yeast protein-protein inter-
action network in order to identify functional modules, groups of proteins form-
ing multi-protein complexes accomplishing various functions in the cell. We have
developed a clustering method that accounts for the small-world nature of the net-
work. The algorithm makes use of the concept of k-cores in a graph, and employs
recursive spectral clustering to compute the functional modules. The computed
clusters are annotated using their protein memberships into known multi-protein
complexes in the yeast. We also dissect the protein interaction network into a
global subnetwork of hub proteins (connected to several clusters), and a local
network consisting of cluster proteins.

1 Introduction

Systems biology involves the study of complex biological structures and processes
by identifying their molecular components and the interactions among them. Looking
across the evolutionary landscape, biological subsystems performing discrete functions
are capable of being linked together in different ways without lethality to an organ-
ism, and often with positive gains in complexity and adaptation. Among the properties
that are now recognized in multiple biological systems are: modularity (sets of semi-
autonomous molecules that perform specific functions); robustness (the ability of bio-
logical systems to tolerate perturbations and noise); and emergence (new properties that
emerge from the interaction of functional modules) [14].

One of the challenges in computational systems biology is to create tools that enable
biologists to identify functional modules and the interactions among them from large-
scale genomic and proteomic data. We report the results of a study on an organism-scale
protein-protein interaction network in the yeast with the goal of identifying proteins that
form functional modules, (i.e., multiple proteins involved that have identical or related
biological function), by clustering techniques. Furthermore, we propose a hierarchical
organization of the proteomic network.
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Methods for clustering proteomic networks have to cope with several features spe-
cific to protein interaction data. High-throughput experiments such as the yeast 2-hybrid
system and the tagged affinity purification (TAP) [1,15,16], have high error rates, near-
ing 50% in some instances. Proteomic networks are modified power-law networks and
small-world networks [6]. That is, the distribution of the fraction of vertices with a given
degree follows a modified power-law; and the average path length between vertices is of
the order of lnn (or smaller), where n is the number of vertices in the network. Hence
there is a large number of low degree proteins, and a significant number of high degree
proteins. The latter make it harder to discover clusters in the data, while the former in-
crease the computational requirements. Cluster validation is hampered by the fact that
there is often little overlap between different experimental studies due to the limited
coverage of the interactome [13]. Finally, the predicted clusters must be biologically
significant: e.g., functionally homogeneous.

In spite of these difficulties, we believe that we have successfully clustered a yeast
proteomic network, with the predicted clusters overlapping well with multi-protein
complexes and organelles. Our approach is based on identifying hub proteins, pro-
teins that connect to a large number of clusters, and low-shell proteins (defined in the
next section), and clustering the residual network. Low-shell proteins can be added to
the cluster network at a later stage. We validate the clusters by comparing the clusters
against experimental data on multi-protein complexes.

The hub proteins carry interesting information about the architecture of proteomic
network, and are organized into a subnetwork of their own. Thus we propose a two
level architecture for the yeast proteomic network, consisting of a global subnetwork
of hubs, and a local subnetwork of clusters and low-shell proteins. A schematic of
this architecture is shown in Fig. 1, where the top level corresponds to the global hub
network, and the lower level corresponds to the local cluster network.

Fig. 1. A schematic representation of the yeast proteomic network as a hub-cluster interaction
network. The top level corresponds to a global network of hub proteins, and the bottom level to a
local network of cluster proteins.
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2 Materials and Methods

2.1 k-Cores and k-Shells in Graphs

We begin by describing the concepts of a k-core and a k-shell in a graph, since our
clustering method makes use of these.

Given a natural number k, the k-core of a graph G is the maximal subgraph of G in
which every vertex has degree at least k in the subgraph (provided it is not the empty
graph). The k-cores in a graph are nested: the (k + 1)-core is contained in the k-core,
for k = 0, 1, . . ., K − 1, where K is the value of the maximum core in the graph.
The k-core of a graph need not be a connected subgraph even if the original graph is
connected. Note that if a graph contains a k-vertex connected component or a clique on
k + 1 vertices, then it is contained in a k-core; however, the k-core need not contain a
k-connected subgraph or a clique on k + 1 vertices.

The k-shell of a graph is the set of vertices that belong to the k-core, but not to the
(k+1)-core. The k-shell includes vertices with degree k from the k-core, but also other
vertices whose degree in the residual graph becomes less than (k +1) when low degree
vertices are removed.

There is a well-known linear-time algorithm, in the number of edges, for computing
the k-core (indeed, for finding all k-cores, for k = 0 to the maximum core value) of a
graph. The idea is to repeatedly remove vertices v of degree less than k from the graph
and all edges incident on v, updating the degrees of the neighbors of v in the residual
graph as edges are deleted. The algorithm repeats this step until all vertices that remain
have degree k or higher in the residual subgraph.

We have extended the concept of a k-core to a hypergraph in earlier work [19].
k-cores have been used earlier for clustering proteomic networks as a way of identi-
fying highly connected subnetworks and for removing proteins belonging to low shell
values [4].

We claim that clustering the k-core of a network removes noise in the data, in the
same spirit as computing a shared nearest neighbor similarity (SNN) network. In an
SNN network, two vertices are joined by an edge with weight equal to the number of
their common neighbors at a distance less than or equal to d, where d is a natural number
parameter. The SNN network includes only those edges that have weight higher than a
threshold, and clustering algorithms have been designed to work with this network [17].
Unfortunately for large networks of small average path lengths, the computation of the
SNN network can be prohibitively expensive. We suggest that the k-core is an efficient
way to compute a network that approximates an SNN network. Every vertex in a k-core
is adjacent to at least k other vertices in the subgraph, each of which is adjacent to k
vertices with high core values.

2.2 Clustering Algorithms

Three major clustering approaches have been employed to identify functional mod-
ules in proteomic networks. The first approach searches for subgraphs with specified
connectivities, called network motifs, and characterizes these as functional modules or
parts of them. A complete subgraph (clique) is one such candidate, but other network
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motifs on small numbers of vertices have been identified through exhaustive searching
or statistical methods [21]. This approach is not scalable for finding larger clusters in
large-scale networks. The second approach, recently proposed in this context by Bader
and Hogue [4], computes a weight for each vertex (depending on the density of a max-
imum core in the neighborhood of the vertex); it then grows a cluster around a seed
vertex, a vertex with the largest weight in the currently unclustered graph. A vertex
in the neighborhood of a cluster is added to it as long as its weight is close (within a
threshold) to the weight of the seed vertex. Once a cluster has been identified, the pro-
cedure is repeated with a vertex of largest weight that currently does not belong to a
cluster as the seed vertex. However, our experience comparing this approach with the
spectral algorithms that we describe next shows that this method is less stable than the
latter (i.e., the clusters depend on the seed vertices chosen).

We now discuss a spectral algorithm for clustering.
Let G = (V, E, W ) denote a weighted graph with vertex set V , edge set E, and

weights on the edges W . Consider the problem of partitioning V into two sets V1 ∪ V2.
We consider the weights

Wil ≡ W (Vi, Vl) =
∑

j∈Vi,k∈Vl,(j,k)∈E

wjk ,

where i, l = 1, 2. Minimizing the objective function

J(V1, V2) =
W12

W11
+

W12

W22

minimizes the sum of weights of the edges between distinct clusters, while simultane-
ously maximizing the sum of the weights of the edges within each cluster. This objective
function for clustering has been called the MinMaxCut [10], and it measures a ratio re-
lated to the separability of a cluster to its cohesion. We prefer this function to related
objective functions that have been proposed such as Normalized Cut.

Let Q denote the Laplacian matrix of a graph with weights wij on its edges (i, j);
thus qij = −wij for i �= j, and each diagonal element qii is the sum of the weights of
the edges incident on the vertex i. Let D be a diagonal matrix with its i-th component
dii =

∑
(i,j)∈E wij ; d1 =

∑
i∈V1

dii, and d2 =
∑

i∈V2
dii. Let p be a ‘generalized

partition vector’ with pi =
√

d2/d1 for i ∈ V1; and pi = −
√

d1/d2 for i ∈ V2; let e
be the n-vector of all ones. Then we have pT De = 0, and pT Dp = d1 + d2. Ding et
al. [9] have shown that

min
V1,V2

J(V1, V2)

is equivalent to
min

p
pT Qp/pT Dp, subject to pT De = 0.

This minimization problem is NP-hard since the generalized partition vector p is re-
stricted to have elements from one of two values. However, we can relax this constraint
and let p take values from [−1, +1] to obtain an approximate solution. This problem
is solved by the eigenvector x corresponding to the smallest positive eigenvalue of the
generalized eigenproblem Qx = λDx.
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The partition is obtained by choosing the vertices in one part to consist of vertices
with eigenvector components smaller than a threshold value, while the other part has
the remaining vertices. The threshold value could be chosen so as to locally minimize
the MinMaxCut objective function. For details, see [8,10].

A clustering method is obtained by recursively applying the spectral partitioning
method, by splitting each current cluster into two subclusters. The MinMaxCut objec-
tive function can be used to determine if a given cluster should be split further.

2.3 Algorithm

The yeast protein interaction network under study has 2610 proteins and 6236 inter-
actions; we work with its largest connected component, which has 2406 proteins and
6117 interactions.

In the first step, we separate the high degree proteins, which are candidates for hub
proteins. A hub is a protein that connects several different clusters in the network to-
gether, and these form a subset of the high degree proteins. After some experimentation,
we chose candidate hub proteins to be those with degree 15 or higher in the network
we study. The residual network has 2241 proteins and 3057 interactions, and consists
of 397 connected components. The largest connected component of the residual graph
has 1773 proteins and 2974 interactions (and hence most of the other components have
few or no edges). We chose the largest component for further analysis.

In the second step, we compute the 3-core of the residual graph in order to remove
the low- shell proteins (the 0-, 1-, and 2-shells) from the network. As discussed ear-
lier, we believe that this step removes some of the noise from the experimental protein
interaction data. We have found that this step has two advantages. First, the clustering
algorithms generate better clusters of the residual network; the low shell proteins can
be assigned to a cluster after it has been identified. Second, this step reduces the graph
size substantially since this is a modified power law network with a large number of
low degree proteins.

In the third step, we have applied the spectral clustering recursively to cluster the
subgraph and identify the clusters, employing the MinMaxCut objective function. Once
the clusters are identified, then the high-degree proteins which were removed as candi-
date hub proteins can be confirmed as hub proteins if they connect multiple clusters, or
can be included among the cluster proteins.

Our spectral clustering code is currently written in Matlab for quick prototyping.
The current code takes 65 seconds on a PC with a 1.3 MHz Intel processor and 768 MB
memory. The hub and k-core computations are faster. Here we have greatly reduced the
run times needed by removing the low-shell and hub proteins before clustering.

We have been concerned in this paper with identifying a methodology that can
successfully deliver biologically significant clusters in proteomic networks. Distributed
computations will be needed when we consider larger proteomic networks such as the
human, and networks consisting of heterogeneous data.

We are also concerned with scalable clustering algorithms. The proposed approach
requires O(|E| log |V |) time, where |E| is number of edges in the network, and |V |
is the number of vertices. The k-core computation and the eigenvector computation at
each clustering step can be performed in time O(|E|); and there are log |V | partitioning
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steps needed to cluster. The spectral clustering could be replaced with a multi-level
clustering approach that can also be implemented in time O(|E|).

3 Results

3.1 Data Source and Analysis

Among the protein interactions produced by high-throughput methods such as the yeast
2-hybrid experiment or tagged affinity purification (TAP) [1,15,16], there are many
false positives due to experimental limitations as well as biological factors (proteins
that are not expressed at the same time or in the same cellular locale) [13]. In or-
der to reduce the interference by false positives, we focused on the protein interac-
tion network from the Database of Interacting Proteins (DIP), circa. April 2004 (URL:
dip.doe-mbi.ucla.edu/dip/), consisting of the reliable dataset, which includes
only data determined by a small-scale experiment, confirmed by independent high-
throughput experiments, or scored highly by a probabilistic method that estimates the
reliability of an interaction. This dataset has 2610 proteins that involve 6236 interac-
tions considered to be reliable with high confidence.

3.2 The Cluster and Hub Networks

The local network computed by the clustering algorithm on the yeast protein inter-
action network, from which high degree proteins (hubs) and low-shell proteins have
been removed, is shown in Fig. 2. Colors are used to distinguish the proteins belong-
ing to a cluster, although some colors are reused to color proteins belonging to clusters
that are drawn sufficiently far from each other. Thirty-eight clusters are displayed; for
clearer presentation, we have omitted the edges joining two clusters when fewer than
three edges join a cluster to another. All edges joining proteins within each cluster are
shown.

The sum of the numbers of within-cluster edges is 984, while the sum of the between-
cluster edges is 239, and the largest number of edges joining one cluster to another is
9. These measures are related to the concepts of cohesion and separation of the cluster-
ing [22], and thus we believe that our method has been able to cluster the residual net-
work well. Each of the clusters is assigned to multi-protein complexes using the Munich
Information Center for Protein Sequences (MIPS) database (URL: mips.gsf.de), as
described in the next subsection. Each low-shell protein can now be easily assigned to
a cluster with whose proteins it has the most number of interactions.

From a topological point of view, our approach to clustering helps to uncover the
hidden topological structure of a proteomic network. We found that there are two major
subnetworks within the protein-protein interaction network. In addition to the cluster
network, we also construct a hub network, the subnetwork formed by the hub proteins
in the protein interaction network; a subnetwork formed by the 5-core of the hub net-
work is shown in Fig. 3. Four ‘super-clusters’ are clearly evident in the hub interaction
network: from top to bottom, these correspond to the spliceosome, proteins involved in
mRNA export and the nuclear pore complex, the regulatory subunit of the proteasome,
and proteins that are transcription factors.
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We now consider various subnetworks of the yeast protein interaction network to
illustrate the differences between the ‘global’ hub network, and the local ‘cluster’ net-
work. Table 1 lists the sizes of these networks, the average path lengths, the diameters,
and the cluster coefficients. (The cluster coefficient measures how likely two neighbors
of a vertex are to be adjacent to each other in the network, on the average.) The row ‘C
+ S’ denotes the ‘cluster and shell’ subnetwork obtained by removing the hub proteins
from the whole network. Note that this subnetwork has the highest diameter and average
path length, due to the presence of the large number of low-shell proteins. Once they
are removed, the cluster network exhibits the highest clustering coefficient, supporting
our premise that this is a local network. The hub network has the lowest diameter and
average path length due to the edges joining the hub proteins to each other (cf. Fig. 3).
The tight clustering seen in the hub network was surprising to us, but it is clear that hub
proteins preferentially interact with cluster proteins and with each other, rather than the
low shell proteins. We discuss the hub subnetwork and clusters in it in more detail in
the next subsection.

The average path lengths in these networks are compared against lnn, where n is
the number of vertices in each subnetwork. Random power-law networks with exponent

Fig. 2. Clusters in the yeast proteomic network from which hub and low-shell proteins have been
removed. When fewer than three edges join a pair of clusters, such edges have not been drawn in
this figure, for clarity in presentation.
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Table 1. Properties of various subnetworks of the yeast protein interaction network

Subnetwork No. of Average Path Diameter Cluster
vertices edges Length (ln n) coefficient

Hub 165 507 3.5 (5.1) 7 0.37
Cluster 495 1223 6.5 (6.2) 16 0.43
C +S 1773 2974 7.6 (7.5) 19 0.15
Whole 2406 6117 5.1 (7.8) 13 0.21

β satisfying 2 < β < 3 have expected average path lengths of order ln lnn, while if the
exponent β > 3, it is lnn [7]. We see that lnn is a good approximation for the average
path length of the cluster and cluster-shell networks; but any network that includes the
hub proteins has an even lower average path length.

3.3 Functional Annotation of Clusters

One way to validate the clusters we discovered is to check how homogeneous the pro-
teins in each cluster are with respect to function or the biological process that they
are involved in. Each cluster should consist of one or more multi-protein complexes,
which are molecular machines responsible for various cellular functions. We compared
38 clusters that we found with multi-protein complexes listed in the MIPS database. We
found that in thirteen of the MIPS protein complexes, every protein in the complex was
also identified in a cluster corresponding to it; for nine more complexes, we found more
than half the proteins involved in the complex in a corresponding cluster. These results
are despite the facts that hub and low-shell proteins are not included in this comparison,

Fig. 3. The 5-core of the global hub network. The four clusters evident in this figure correspond
to the spliceosome, mRNA export, the proteasome, and various transcription factors.
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and that many proteins in the MIPS database are not included in the DIP protein network
under study here. When the hubs and low-shell proteins are included, the coverage will
increase further. A table containing the number of each cluster, a corresponding MIPS
complex name and its MIPS ID, the number of proteins the cluster and the complex
have in common, and the names of these proteins, is included in file table1.xls,
see the Supplementary Materials at
www.cs.odu.edu/˜pothen/Papers/Cluster/DIP/.

We should note that, in general, the clusters that we have discovered contain more
proteins than those reported to belong to a corresponding MIPS complex. This suggests
possible biological roles and functional assignments for such proteins, many of which
are not currently functionally annotated.

The protein interaction graph of each cluster and a biological process annotation for
it, using a directed acyclic subgraph (DAG) derived from the Gene Ontology
(URL: www.geneontology.org), are also included in the Supplementary Materi-
als. The cluster subgraphs are included in the jpg files, while GO DAGs are listed in
the png files. While some of the cluster graphs are near-cliques or subgraphs with high
edge connectivity, many of them are not. We believe that this validates our approach of
finding complexes by a general clustering approach rather than searching for specific
subgraph motifs.

3.4 Interactions Between the Hub and the Local Networks

We now consider the hub protein subnetwork and its interaction with the local network
in more detail.

One of the complexes in cluster 8, the U4/U6 x U5 tri-snRNP complex, (listed in the
file table1.xls in the Supplementary Materials), is comprised of a group of proteins
involved in spliceosome processing of mRNA. This is the top-most cluster represented
in Fig. 3. The spliceosome is required for the ordered and accurate removal of intronic
sequences from pre-mRNA and thus plays a key role in alternative splicing, a process
of great importance in higher eukaryotes whereby a single gene can generate multiple
transcripts (alternatively spliced mRNAs) and thus multiple proteins [12]. The PRP
(pre-mRNA processing) and Sm family proteins make up most of the proteins found
in cluster 8. Some of the key proteins involved in mRNA processing, including those
belonging to the LSM family, are not found in that cluster, but among the hub proteins
that interact with multiple clusters.

One of the complexes in cluster 24, the first mRNA cleavage factor complex (rep-
resented in the file cl24.jpg in the Supplementary Materials), includes five proteins
involved in mRNA cleavage in preparation for the addition of the eukaryotic signature
poly-A tail. Thus, proteins including CLP1 (involved in cleavage of the 3′ end of the
mRNA prior to tailing), and RNA 14 and 15 (two proteins that participate with CLP1 in
formation of the 3′ end of mRNA), are collectively implicated in alternative selection
of the poly-A addition site [18].

Now we focus our attention on the single protein-protein edge which joins the top-
most hub cluster in the figure, corresponding to mRNA splicing, to a second hub cluster
involving mRNA export and nuclear pore formation proteins, corresponding to mRNA
export, in Fig. 3. The two hub proteins that form the bridge between these clusters are
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PRP6, a component of the mRNA splicing machinery, and PAB1, the poly-A binding
protein involved in the final step in mRNA processing. We note that PRP6 is involved in
the later stages of mRNA splicing and is in that sense the penultimate step prior to poly-
A tailing. Thus, the overall logic of joining these two complexes by these particular hub
proteins is compelling.

We now examine the connections formed by these two hub proteins with the local
clusters that we picture as lying below them in the hierarchy of global (hub) and local
(cluster) networks (see Fig. 1). PRP6 interacts with a single cluster (cluster 8) through
the protein SMD1. SMD1 further interacts with splicing proteins PRP3 and SMD3 in
the hub complex that includes PRP6. SMD1 is involved in the early stages of mRNA
splicing and is highly conserved, showing greater than 40% amino acid identity between
yeast and human [20]. PRP6 interacts with PAB1 in the second hub complex. PAB1 in
turn interacts with three clusters, 22, 24 and 34. As noted above, cluster 24 includes
RNA14 and RNA15, both involved in mRNA cleavage, and it is these proteins that in-
teract with PAB1. PAB1 also forms connections with cluster 22 (via its interaction with
TIF4632 = eIF4F, file cl22.jpg), and with cluster 34 (via PKC1, file cl34.jpg).
These latter interactions (eIF4F and PKC1) are at first glance puzzling, but in fact they
are entirely consistent with emerging evidence of interactions and regulatory loops that
exist between distinct components in the gene expression machinery. The poly-A ter-
minus of mRNA, and the associated PAB1, not only interacts with the 5′ end of the
mRNA, ensuring structural integrity of the transcript prior to its participation in protein
translation [5] , but the PAB1 terminus also interacts with the translation machinery
itself, and specifically with eIF4 initiation factors. Finally, PKC1, a protein kinase cru-
cial to cell signaling pathways, is also implicated in functional interactions with PAB1
and eIFs [3], suggesting global level regulation of protein synthesis from metabolites
through mRNA processing.

At the global level of our network model, we find key proteins involved in rate-
limiting steps of gene expression, linked in logical order; these are connected to the
local network consisting of clusters of proteins involved in execution level functions.
Whether this overall pattern is typical of the proteome organizational structure we have
identified here, remains to be further investigated.

3.5 Incorporation of Protein Domain Data

Proteins interact with each other through regions that have a specific sequence and
fold, called domains. Here we further validate the protein complexes predicted from
our clustering approach using information on the domain structure of proteins.

The study of proteins involved in processing eukaryotic mRNAs indicate that
virtually all steps involved in gene expression are coordinated and integrated via protein-
protein interactions. The LSM proteins provide an informative example of the
integration of cellular protein machinery to couple synthesis and quality control in
gene expression [2,11]. LSM proteins form heptameric complexes that bind to RNA
molecules; one such complex is found primarily in the nucleus where it coordinates
splicing of mRNAs, while a second, related, complex of LSM proteins assembles in the
cytoplasm to monitor mRNA quality control. LSM proteins have been extensively char-
acterized and include two highly conserved protein interaction domains, SM1 and SM2.
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It is proposed that these conserved domains permit each LSM protein to interact with
two other LSM proteins in forming the heptameric, doughnut shaped ring structure that
is implicated in mRNA splicing. LSM proteins comprise a gene family in which suc-
cessive rounds of gene duplication have increased LSM copy numbers. LSM proteins
have also been shown to form stable interactions with other protein types, including the
PRP proteins discussed below.

The PRP proteins similarly carry a protein-protein interaction motif, the tetratrico
peptide repeat (TPR) [23]. PRP proteins typically contain multiple copies of the 34
amino acid repeat; Prp1 for example contains 19 repeats of the TPR (ibid). Some PRP
proteins contain a second conserved site at the C-terminus of the protein that facilitates
interactions between them and LSM proteins, thus coupling two complexes with key
roles in mRNA splicing. Our hub network predicts the formation of a complex contain-
ing LSM proteins 1-5, 7 and 8, as well as PRP proteins 4, 6, 8, and 31. The specific
interactions implicated in our sub-network are, to our knowledge, the first explicit as-
signments of interactions between these two families of proteins.

We were surprised to find that the hub proteins form a highly interconnected sub-
network. Biological evidence indicates that LSM proteins do indeed form multi-protein
complexes in the course of performing their key cellular functions. The fact that each
LSM protein has at least two protein-protein interaction domains helps us understand
how the complexes are formed. Whether similar binding interactions can account for
other closely knit hub networks is under investigation.

4 Conclusions

We have proposed a two-level architecture for a yeast protein-protein interaction net-
work. We place a small set of hub proteins, each with at least fifteen interaction partners
and involved in gene expression, mRNA export, the proteasome, and transcription fac-
tors, into a global subnetwork. A local subnetwork of proteins is organized into clusters
that correspond well with multi-protein complexes in the MIPS database. We used the
computed clustering to examine the biological significance of some of the interactions
observed between the hub and local subnetworks. If the proposed two-level architecture
exists in other proteomic networks, then it would be interesting to discover properties
that distinguish hub proteins from the proteins in the local network.

In future work, we will consider the computation of an overlapping clustering rather
than the exclusive clustering approach considered in this paper, so that a protein could
be included in more than one cluster in the local network. We will also investigate
additional clustering approaches and biological networks involving heterogeneous data.
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